

ENGINEERING EYOBUNJINELI INGENIEURSWESE

Prof Craig McGregor

craigm@sun.ac.za

Research Field

Solar thermal energy, green hydrogen

• General Description of Research Field Solar thermal Energy and Green Hydrogen research, focusing on:

* techno-economic analysis * systems engineering and optimization * heliostat design and mechatronics * thermofluid design of solar receivers and thermal energy storage systems * industrial application of solar thermal heat * power cycle design for CSP and high temperature heat pumps

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
A review of recent CSP cost reductions through a technical and	\checkmark	\checkmark		
economic assessment of recent tariff price bids				
Concentrating solar power (CSP) has seen considerable cost re-				
ductions over the past decade, with installed costs having halved				
according to IRENA (2021). Given our excellent solar resources in				
South Africa, CSP offers an excellent opportunity to address our				
current electricity supply constraints whilst establishing a signifi-				
cant manufacturing industry in the country.				
This project will study the landscape of recent international CSP				
projects to model and review the causes of the cost trends over the				
past 5 years and to assess the implications for CSP technology				
deployment in South Africa. Technical and economic models of each				
of the recent CSP plants will be built in NREL's System Ad- visory				
Model and compared with published performance data on the				
plants. The economic model will be used to calculate the lev- elised				
cost of electricity and bid tariffs. The cost model must finally be fine-				
tuned to accurately predict the bid tariffs of the modelled projects.				
This cost model can then be used to forecast future cost trends for				
CSP in South Africa.				
Requirements: none				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Fuel-fired augmentation of CSP plants in South Africa as back-	\checkmark	\checkmark		
up for poor solar days				
Given our excellent solar resources in South Africa, concentrating				
solar power (CSP) offers an excellent opportunity to address our				
cant manufacturing industry in the country Because a CSP plant				
includes a significant amount of thermal energy storage it can dis-				
patch power throughout the night. Even in the desert locations such				
as the Karoo of the Northern Cape where CSP plants are lo- cated,				
there are periods of overcast or cloudy weather that would				
interrupt generation. A CSP plant that includes a fuel-fired sys- tem				
of low solar resource making CSP a firm and depend, able power				
source. This project will study the technical and eco- nomic aspects				
of such a fuel-fired augmentation of CSP. The project should				
consider biomass and fossil fuel sources and investigate the best				
power cycle configuration (direct integration through the ad- dition				
of a fuel-fired boiler, or an integrated solar combined cycle mode				
Rankine cycle of the CSP plant)				
Requirements: thermodynamics				
Design and configuration of solar thermal multi-tower field		\checkmark	\checkmark	\checkmark
layout		-		-
Central receiver CSP plants, also known as power towers, are built				
at very large scale (typically 50 to 100 MW or more). They re- quire				
significant capital, and the 150- to 250-metre-tall tower can take up				
to two years to build. Conversely, utility photovoltaic (PV) plants can				
potentially be constructed within six months and re- quire much				
ontimise a CSP plant composed of an array of heliostat field/tower				
modules (multi-tower system) that can be constructed quickly and				
sequentially, and that all supply a single power plant. Such a system				
has the potential to start generating electricity (and hence revenue)				
after completion of the first module of the array. The study will				
develop a simulation of the multi-tower includ- ing optical and				
ontimise the configuration of the system See e.g.				
https://doi.org/10.1063/5.0028916				
Requirements: none				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Structural design and testing of advanced polygonal heliostat facets for advanced assembly line manufacturing A heliostat is a mirror assembly with dual-axis tracking that fo- cuses solar irradiation on to the central receiver of a concentrating solar power (CSP) plant. Heliostats are high precision "robotics" systems that are costly to manufacture and constitute roughly 40% of the capital of a CSP plant, and a significant portion of the he- liostat cost is the structure that supports and moves the aligned heliostat facets. Significant cost reductions in heliostat manu- facture can possibly be achieved by applying a design for man- ufacturing approach on a novel heliostat facet sandwich struc- ture and high reflectivity anodised aluminium sheeting, configured into a polygonal shape for increased optical and structural perfor- mance. The structural design, considering assembly line manu- facturing, will be completed in the study followed by the fabrica- tion of a large-scale facet for characterisation and testing. See e.g. http://dx_doi_org/10_1016/j_solener_2017_03_029 and https://doi.org/10.1063/1.5067066.	Struct	Resrch	~	Funding
Requirements: none				
 Design and testing of a winch actuated heliostat A heliostat is a mirror assembly with dual-axis tracking that focuses solar irradiation on to the central receiver of a concentrating solar power (CSP) plant. Heliostats are high precision "robotics" systems that are costly to manufacture and constitute roughly 40% of the capital of a CSP plant, and a significant portion of the heliostat cost are the two actuators that perform the dual axis tracking of the sun. Typical commercial heliostats use worm drives for the azimuth drive and linear actuators with lead screws for the elevation drive. This study will design, build, and test a heliostat using a novel winch and cable actuation. See safeTrack H4[™] - Trackers - Products - Ideematec safeTrack H4[™] - Trackers - Products - Ideematec safeTrack H4[™] - Trackers - Products - Ideematec safeTrack H4[™] - Trackers as well 			\checkmark	

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Thermofluid design and modelling of a thermosyphon liquid sodium receiver concept		\checkmark	\checkmark	
The central receiver is a critical component of a power tower con- centrating solar thermal power system, cf. https://www_solarp aces_org/how-csp-works/. Solar energy is concentrated onto heat exchanger tubes in the receiver, where the heat is typically carried away by a heat transfer fluid such as molten nitrate salt or used to raise steam. The design of the receiver is complicated by the high temperatures and very heat fluxes (MW/m2) involved, and the need to make sure that the structural and material proper- ties of the heat exchanger tubes of the receiver do not deteriorate. A novel concept using a loop thermosiphon (https://www_1-act _com/products/loop-thermosyphon/) has been proposed as an alternative to the conventional design. In the loop thermosyphon a working fluid evaporates to carry heat to a heat exchanger sur- face where is condenses, setting up a loop that can transport heat with no active pumping of the working fluid. The objective of this project is to develop a conceptual design and thermofluids model of a loop thermosyphon based solar receiver, using boiling liquid sodium metal as the working fluid. Students with a more practical inclination build and test a working prototype loop thermosyphon receiver that operates at a lower temperature, and that uses a safer working fluid. Co-supervised with Prof Ryno Laubscher.				
vantage				
Comparison of electrification of the South African Railroad network to the use of hydrogen fueled locomotives Railroad networks around the world have moved to electrification to eliminate greenhouse gas emissions. However, electrification of the networks involves the installation and maintenance of large systems of electric power distribution systems with the associated risk of restrictions on usage from vandalism or natural events. Tra- ditionally, for many areas, the choice has been the usage of diesel fuelled locomotives over some or all the system. The South African rail system has challenges unique to this country. The limits of an economically justifiable electrified system should be investigated, and the economic analysis of hydrogen fuelled locomotives quan- tified. The use of hydrogen fuelled locomotives will require an entirely new infrastructure for production, storage, and distribu- tion of the fuel. This fuel supply must be considered in the choice to use hydrogen fuel. As the development of this application pro- ceeds, this supply question could determine its economic value to the user and to the transition to a sustainable energy system. Co- supervised with Dr Steve Clark. Requirements: none				

Topics	MEng	MEng	PhD	Potential
	Struct	Resrch		Funding
Exploitation of excess renewable generation	\checkmark	\checkmark		
Solar and wind generation are well known to be variable and de-				
pendent on weather rather than demand. Major usage of these				
resources requires overbuilding of the system to account for times				
when they do not meet the demand. The focus in designing these				
systems has been in meeting the times when they fail to meet the				
demand. Little effort has been expended in finding viable uses				
for the excess power that will be generated from these systems.				
Systems around the world are already faced with times where ex-				
cess generation must be handled, leading to curtailment or neg-				
ative prices. This situation will grow as the transition continues.				
Modelling indicates that this excess production could be over 30%				
of the overall energy generated with a system having generation				
completely from wind and solar resources, which in South Africa				
would be over 100 TWh of available energy annually. Any use				
of this excess energy must have the flexibility to use the energy				
when it is available with daily and seasonal variation. With little				
research and development in this area, there is a very large scope				
for innovation and open thinking in identifying and developing				
opportunities. Co-supervised with Dr Steve Clark.				
Requirements: none				