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Abstract  
Waste-to-energy technology using agricultural residues, especially in developing 

countries, can assist in achieving the sustainable development goals of (SDGs) of the United 
Nations. Large quantities of cow dung and jatropha cakes are released annually, leading to 
severe environmental challenges and urgent attention. Anaerobic co-digestion of two or more 
feedstocks is becoming more popular because it improves biogas yield and organic waste 
management. This study investigates the influence of three independent variables of 
temperature, retention time, and mixing ratio on the biogas yield of cow dung and jatropha cake. 
Central Composite Design of Response Surface Methodology (RSM) was used to optimize and 
predict biogas yield through an anaerobic co-digestion process. The observed result indicates 
that the linear model terms of temperature, retention time, and mixing ratio have significant 
interactive effects (P ≤ 0.05). The optimum conditions were observed to be a temperature of 34 
°C, a retention time of 29 days, and a 50:50 % mixing ratio (cow dung to jatropha cake). The 
model predicted 1.8 L/Kg VSadded at the optimum conditions with a correlation value (R2) of 
0.8390. The predicted result shows that RSM models can predict biogas yield. In general, this 
study has demonstrated that co-digestion of cow dung and jatropha cake is a promising way to 
enhance biogas yield by providing nutrient balance, and this can be replicated at the industrial 
scale.  

Keywords: Biogas yield, Co-digestion, Cow dung, Jatropha cake, Response Surface 
Methodology (RSM). 

1. Introduction  
Biogas production from organic wastes as bioenergy retrieval and pollution control is a 

bright means of reducing greenhouse gas emissions and a sustainable means of waste 
management technology (Dhar, Kumar and Kumar, 2017). Biogas released from these organic 
wastes through the anaerobic digestion process can be utilized for heating, lighting, and 
electricity generation and can be refined and injected into the grid (Ellabban, Abu-Rub and 
Blaabjerg, 2014). The anaerobic digestion process is a multi-stage biological and chemical 
process that employs anaerobic microorganisms to transform biodegradable wastes into biogas 
rich in methane gas (Jekayinfa et al., 2020). Residues from agricultural activities such as wheat 
straw, maize streak, cow dung, poultry manure, groundnut shells, rice straw, jatropha cake, 
loofah cake, etc. are some of the abundant and cheap lignocellulose feedstocks with high 
organic contents for biogas generation (Adebayo, Jekayinfa and Linke, no date; Patil et al., 
2016; Kehinde O. Olatunji et al., 2022). Large quantities of animal wastes, agricultural residues, 
and bio-oil cakes have been traditionally produced and managed, leading to environmental 
challenges like pollution, eutrophication, and soil and groundwater contamination (Baek et al., 
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2020). Conversion of animal wastes and oil cakes into biogas, fertilizer and other bye products 
will minimize the environmental challenges, enhance soil fertility, and generate clean and 
sustainable energy (Raheman and Mondal, 2012; Bhuvaneshwari, Hettiarachchi and Meegoda, 
2019; Olatunji, Adebayo and Bolaji, 2020). 

Jatropha cake is a bio-oil cake with a high content of lignocelluloses, making it ineffective 
during anaerobic digestion and producing moderate biogas yield with a higher retention period 
compared to other easily digestible feedstocks (Raheman and Mondal, 2012). On the contrary, 
cow dung has a higher percentage of degradable organic contents and carbon-nitrogen ratio 
than other organic substrates for biogas generation (Franqueto, da Silva and Konig, 2020). 
Therefore, co-digestion of cow dung and jatropha cake is suggested to overcome the 
challenges associated with the anaerobic digestion of each feedstock (Barik and Murugan, 
2015). Anaerobic co-digestion of different residues/wastes during anaerobic digestion is 
commonly used to balance the nutrient contents shortage of other feedstocks, compensating for 
the nutrient limitation of each feedstock. Anaerobic co-digestion also avails the dilution of 
potentially toxic compounds and improves biogas yield and process kinetics (Pinpatthanapong 
et al., 2022). Several studies have experimented with anaerobic co-digestion of various wastes 
and proposed a means of enhancing biogas yields (Beltramo et al., 2016; Zupančič, Panjičko 
and Zelić, 2017; Safari et al., 2018).  

Biogas yield improvement requires optimizing the process parameters that greatly influence 
the process. In this case, biogas generation from organic wastes needs optimization and 
stabilization of process variables that affect the process significantly (Kehinde Oladoke Olatunji 
et al., 2022a). An accurate selection of anaerobic digestion process parameters is required to 
achieve the optimization focus. The development of appropriate and dependable models that 
can accurately forecast biogas yield instead of following the optimization test space that is very 
demanding due to the non-linearities related to the process is necessary. Optimization of 
process parameters has been studied widely using ineffective traditional methods. These 
methods require many experiments that consume a lot of time and cost. To overcome these 
challenges, statistical programs like Response Surface Methodology (RSM) have been 
recommended as optimization tools in the literature (Alfarjani, 2012; Das et al., 2015). It is a 
mathematical and dynamic simulation model that allows the variation of the process parameters 
of anaerobic digestion for different loading scenarios and configurations without disturbing the 
biogas digester. This model has been experimented with in industrial, agricultural, and chemical 

reactions that required empirical design (Arslan-Alaton Idil, Yalabik and Olmez-Hanci, 2010). 
The application of the RSM model experimented in the optimization of biodiesel production (Xu 

et al., 2014), drug research (Li et al., 2008), bioethanol generation (Wang et al., 2011), and 

biogas production (Alfarjani, 2012). 
Nevertheless, it is impossible to conclude that process optimization using RSM is suitable 

for all bioprocess optimization. The RSM model was examined by studying the kinetic constant 

of alkaline protease from Bacillus mojavensis and lipase-catalyzed in the combination of 

docosahexaenoic acid (DHA) into borage oil, and the model was not suitable (QK et al. 2002). 
Likewise, it was observed that at the beginning of an enzymatic reaction's reaction rate, the 
polynomial equation could not be used to interpret the influence of pH and feedstock 

concentration (Ba and Boyaci, 2007). Hence, this work was focused on examining the 

influences of independent process parameters of temperature, retention time, and mixing ratio 
on the biogas yield of cow dung co-digested with jatropha cake and optimizing the process 
variables using RSM. This investigation is expected to provide vital information for decision-
makers in the biogas industry on the anaerobic co-digestion for biogas generation and organic 
waste management.  

2. Materials and method 
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2.1 Anaerobic digestion 

Cow dung and jatropha cake were sourced locally, and five 5-liters containers were used as 
the digester. A laboratory-scale batch experiment was set up according to the European 
standard (organischer Stoffe Substratcharakterisierung, 2016). The substrates were analyzed in 
the laboratory for physicochemical characteristics, and the result was used in calculating the 
quantity of substrate loaded. The setup was similar to what was used by Olojede et al for the co-
digestion of cow dung and sunflower leaves (Olojede, Ogunkunle and Ahmed, 2018). Five 
digesters were set up simultaneously with compositions shown in Table 1, and were observed 
at ambient temperature for 40 days of retention time. The feedstocks were examined for stones 
and other impurities before mixing with water. The mixing was carried out in a ratio of 1:2  (solid: 
liquid), as previously reported as the mixture for optimum biogas yield (Keanoi, Hussaro and 
Teekasap, 2014). The feedstocks were appropriately stirred, and the digesters were fed as 
follows using their volatile solid concentration: Digester 1, 7 kg of cow dung; Digester 2, 5.25 kg 
of cow dung and 1.75 kg of jatropha cake; Digester 3, 3.5 kg of cow dung and 3.5 kg of jatropha 
cake; Digester 4, 1.75 kg of cow dung and 5.25 kg of jatropha cake; and Digester 5, 7 kg of 
jatropha cake. The proportion of the loading was adopted from the previous study (Kavuma, no 
date; Raheman and Mondal, 2012). Ambient temperature and pressure and slurry temperature 
and pressure were recorded by mid-day daily. The biogas produced was collected with tyre 
tubes tightly attached to the gas outlet of the digester. The experiment was stopped after 40 
days when the daily biogas yield was below one percent of the total released. The volume of 
gas yield was calculated using equation 1 (Yaru, Adewole and Adegun, 2014). Gas composition 
was determined using the gas analyzer (Multi 4 Stage Biogas Analyzer). 

𝐵𝑖𝑜𝑔𝑎𝑠 𝑦𝑖𝑒𝑙𝑑 =  
𝑅𝑜 𝑚𝑖𝑥𝑡𝑢𝑟𝑒   𝑋 𝑇𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟

𝑃𝑒
                                                                                                               (1) 

𝑅𝑜 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =  𝑅𝐶𝑂2
+ 𝑅𝐶𝐻4

                                                                                                                                       (2) 

𝑅𝑜  =  
𝑅

𝑀
 𝑋 % 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛                                                                                                                                      (3) 

Where: Ro = specific gas constant of a gas (J/kgK), R = standard gas constant (J/kgK), M = 
molecular mass of the specific gas, Ro mixture = total specific gas constant of the biogas mixture 
(i.e CH4 and CO2), Pe = daily pressure of the digester, Tdigester = daily temperature of the digester 
(°C), and V = volume of gas released (m3). 

Table 1: Co-digestion treatment for the digesters 

Treatment /Digester Cow dung (%) Jatropha cake (%) 

1 100 0 

2 75 25 

3 50  50 

4 25 75 

5 0 100 

 

2.2 Experimental design and analysis with RSM 

The central composite design of RSM was employed to make the experimental runs for the 

process parameters that influence biogas yield. Design Expert 13.0 version software was employed to 

launch the RSM, where temperature, retention time, and mixing ratio were denoted with A, B, and C, 

respectively. Based on previous studies, the independent variables varied across levels between -1 

and +1 (Douglas, 2009). Equation 4 presents the total number of experimental runs for the selected 

factors, which is 30, and the appraised response is given in equation 5. The second-order polynomial 

regression equation was applied to predict biogas yield and was generated using Analysis of 

Variance (ANOVA) (Douglas, 2001). 
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𝐹 =  2𝑑 + 2𝑑 + 6                                                                                                                                                        (4) 
Where: d = number of factors (d = 4), and 6 = constant factor. 
𝑋 =  𝛾𝑜 + 𝜖𝛾𝑖𝑖𝑍1 +  γ𝑜 +  𝜖γ𝑖𝑗 𝑍𝑖𝑍𝑗                                                                                                                          (5) 

Where: X = the measured response, 𝛾𝑜  = the intercept term, 𝛾𝑖𝑖 = quadratic coefficient, 
γ𝑖𝑗  = interaction coefficient, 𝑍𝑖 and 𝑍𝑗 are the coded independent variables. 

3. Results and discussion  
3.1 Experimental and RSM predicted  
The biogas yield experimental result and the predicted responses following the co-digestion 

of cow dung and jatropha cake are presented in Table 2. The 30 runs presented in the Table 
showed that the considered process variables are significant to biogas production. For example, 
biogas released varied when the process temperature was 34 °C and retention time was 36 
days but with varying mixing ratios (Runs 15 and 30). The influence of the mixing ratio on 
biogas yield of co-digestion of cow dung and jatropha cake was also noticed in runs 8 and 29. 
The temperature value (34 °C) and retention time of 30 days with different mixing ratios release 
different biogas yields. This support was reported earlier that anaerobic co-digestion of two 
feedstocks influences the biogas yield (Lebiocka et al., 2019). Co-digestion of the lignocellulose 
materials with co-substrates such as manures and sludge in the digester can address these 
challenges of lignocellulose materials digestion (Kainthola, Kalamdhad and Goud, 2019). The 
mixing proportion in anaerobic co-digestion was reported reported to influence the biogas 
release in a previous study (Geerolf -ii- et al., 2018), and this study re-affirmed the report. The 
influence of temperature on the biogas yield of cow dung and jatropha cake co-digestion can be 
observed in runs 7 and 15. At these runs, the retention time was 34 days, while the mixing ratio 
was the same but at different temperatures, which led to variation in biogas yields. This agreed 
with what was earlier reported on the significant effect of temperature on biogas yield 
(Rajendran, Aslanzadeh and Taherzadeh, 2012; Kehinde Oladoke Olatunji et al., 2022b). It has 
been observed that there is a particular range of temperatures whereby methanogenic bacteria 
thrive well, but below or above that range, it can be harmful to bacterial activities (Barik and 
Murugan, 2015). The retention time was observed to influence biogas yield significantly, as 
seen in runs 9 and 10. The temperature was 32 °C with the same mixing ratio but different 
retention times. This has led to differences in biogas yield, and it corroborates what was 
previously observed that retention time influences biogas production (Okwu et al., 2021). Biogas 
yield increases with an increase in retention time until when a time is reached when there is not 
enough feedstock for methanogens to carry out their activities. At this point, the biogas yield 
starts to decline (Kehinde O. Olatunji et al., 2022).  

It can be inferred from this study that the mixing ratio of 75% cow dung and 25% jatropha 
cake produce the optimum biogas yield (run 24). This implies that mixing 75% of cow dung with 
25% of jatropha cake has a blend of nutrients that the methanogenic bacteria needs to function 
optimally. Single digestion in biogas production is usually unstable and mostly suffers from 
acidification that hinders digestion with time.  Another related research observed that biogas 
yield was enhanced when plantain peels were co-digested with cow dung  (Oloko-Oba et al., 
2018). Some selected animal wastes were co-digested in a fed-batch reactor at mesophilic 
temperature, and improvements in biogas and methane yield were recorded (Adebayo et al., 
2019). In a similar study, optimum biogas yield of cattle slurry and maize stalk was reported 
when the mixing ratio was 75: 25% cattle slurry: maize stalk (Adebayo, Jekayinfa and Linke, no 
date), and it agrees with the finding of this study.  Anaerobic co-digestion of maize stalk with 
cattle slurry was reported to improve the methane yield (Adebayo, Jekayinfa and Linke, no 
date).  

Tables 2: Experimental and RSM predicted biogas yield 

Run 
No  

Temperature 
(°C) 

Retention 
Time (Days)  

Mixing 
Ratio (%) 

Biogas Yield (L/Kg VSadded) 
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    Observed 
yield  

RSM predicted 
yield 

1. 33 28 2 1.40 1.24 
2. 32 32 4 1.11 1.14 
3. 34 30 5 1.06 1.06 
4. 32 28 1 0.95 1.06 
5. 36 25 3 1.60 1.44 
6. 32 35 4 1.05 1.07 
7. 34 26 2 1.38 1.26 
8. 34 30 3 1.25 1.37 
9. 32 34 1 0.98 1.08 
10. 32 23 1 0.81 0.81 
11. 34 23 4 0.90 0.98 
12. 30 22 2 0.86 0.88 
13. 32 32 5 1.01 0.97 
14. 30 32 1 1.01 1.01 
15. 34 36 2 1.52 1.35 
16. 34 29 3 1.22 1.35 
17. 31 33 1 1.01 1.03 
18. 35 25 4 1.35 1.19 
19. 33 33 2 1.48 1.29 
20. 32 33 3 1.21 1.21 
21. 35 25 1 1.18 1.25 
22. 34 24 4 0.97 1.05 
23. 32 29 5 0.99 0.97 
24. 38 25 2 1.80 1.87 
25. 33 31 5 1.04 1.00 
26. 32 22 3 0.86 0.91 
27. 30 34 5 0.97 0.94 
28. 30 22 1 0.78 0.71 
29. 34 30 4 1.15 1.26 
30. 34 36 3 1.17 1.32 

 
3.2 Interactive relationship of process variables on biogas production 
The interactive effect of the independent process variables selected on the biogas yield of 

cow dung co-digested with jatropha cake was analyzed using analysis of variance (ANOVA), 
and the result is shown in Table 3. The Table depicts that the F-value recorded for biogas is 
11.58, indicating that the model is significant. The tendency of having a higher F-value of this 
size because of noise is 0.01%. P-values from the ANOVA result show that the model is 
significant because the P value is below 0.05. This result observed that the significant model 
terms are A, B, C, A2, B2, and C2.  Values higher than 0.1000 indicate that the model terms are 
insignificant. In this case, some terms of the model are nominal (except those required to assist 
hierarchy), so it is possible to improve the model by model reduction. The predicted R2 value of 
0.5964 can be considered to be in reasonable accord with the adjusted R2 of 0.7665 since the 
difference is not up to 0.2. Adequate precision determines the signal-to-noise ratio; a ratio 
above 4 is needed (Jiménez et al., 2014). A ratio of 16.788 was recorded, indicating a 
satisfactory signal that can be used to boycott the design space (Yan et al., 2015). Second-
order polynomial equation 4 can be used to present the final regression terms to explain the 
biogas yield. Equation 4, in terms of coded factors, can be employed to forecast the given level 
of each factor. The +1 coded factor is for the high levels, while the -1 coded factor is for low 
levels, and these were by default. This equation helps determine the relative influence of the 
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factors compared to coefficients. The degree of accuracy of a model is depicted by the 
coefficient of prediction (R2). The value of R2 recorded in this model is 0.8390 (84%). This value 
is higher when compared with R2 values reported in other similar literature in a similar study  
(Erdirencelebi and Yalpir, 2011; Pierucci et al., 2019; Kehinde Oladoke Olatunji et al., 2022b) 
but lower compared to what was reported for other anaerobic digestion experiments (Safari et 
al., 2018; Gopal et al., 2021). R2 values ranging between 0.75 and 1 (75 – 100%) have been 
adjudged to be an excellent predictive strength of the RSM model (Niladevi et al., 2009; 
Reungsang, Pattra and Sittijunda, 2012). The R2 value recorded in this study is within the 
recommended range, which shows that the accuracy level of this model is high and can be 
experimented with at the industrial scale. 

Table 3: Regression analysis of variance (ANOVA) of the model for biogas yield 

Sources 
Sum of 

Squares 
Df 

Mean 
Square 

F-value p-value p>F 

A-Temp.  0.3733 1 0.3733 26.15 <0.0001  

B- Ret. Time 0.1187 1 0.1187 8.32 0.0092  

C- Mix Ratio 0.0808 1 0.0808 5.66 0.0275  

AB 0.0094 1 0.0094 0.6595 0.4263  

AC 0.0208 1 0.0208 1.46 0.2415  

BC 0.0026 1 0.0026 0.1855 0.6713  

A² 0.1090 1 0.1090 7.63 0.0120  

B² 0.0820 1 0.0820 5.74 0.0264  

C² 0.1146 1 0.1146 8.03 0.0103  

ANOVA       

Model 1.49 9 0.1653 11.58 <0.0001 Significant  

Residual 0.2855 20 0.0143 - - - 

Cor Total 1.77 29 - - - - 

Std. Dev. 0.1195 - - - - - 

Mean 1.14 - - - - - 

C.V. % 10.52 - - - - - 

R2 0.8390 - - - - - 

Adj. R2 0.7665 - - - - - 

Pred. R2 0.5964 - - - - - 

Adeq. 
Precision 

16.7877 - - - - - 

A – Temperature, B – Retention time, C – Mixing ratio 
 

𝐵𝑖𝑜𝑔𝑎𝑠 𝑦𝑖𝑒𝑙𝑑 (
𝐿

𝐾𝑔
𝑉𝑆𝑎𝑑𝑑𝑒𝑑 )  

= 1.35 + 0.4068𝐴 + 0.1584𝐵 − 0.1204𝐶 + 0.1000𝐴𝐵 − 0.1313𝐴𝐶
− 0.0352𝐵𝐶 + 0.2554𝐴2 − 0.1936𝐵2 − 0.1888𝐶2                              ( 4 ) 

3.2 Analysis of anaerobic co-digestion residual plots 
 The interaction between predicted biogas yield and the external studentized residues is 
illustrated in Figure 1A. The Figure indicates that the studentized residues were scattered 
mainly around the ‘0’ plot line, implying that the model is suitable for the analysis (Kehinde O. 
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Olatunji et al., 2022). The relationship between the distribution of standard probability and the 
process parameters of the biogas yield is presented in Figure 1B. The residual points shown in 
the plot show a probable curve closer to the fitting line of the modeled data. It can be observed 
that there is no significant challenge between the residual value and normality (Wu et al., 2012). 
The correlation between the observed and residual biogas yield of anaerobic co-digestion of 
cow dung and jatropha cake is illustrated in Figure 1C. The data point in Figure 1C indicated 
that no transformational reaction was experienced from this analysis [29]. A scattered plot that 
presents the interaction between the observed value and forecasted values of biogas yield is 
presented in Figure 1D. It can be inferred from this Figure that RSM predicted values are closer 
to the prediction line, showing the model's accuracy level. All the scattered points were along 
the 45° line indicating a higher degree of accuracy between the observed and forecasted biogas 
yield. The closer the data points to 45°, the higher the model's accuracy (Adeleke et al., 2021). 
Essential functions analyzed showed a similar association, showing that the empirical model is 
viable for the process.  
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Figure 1: Plots of (A) externally studentized residual against predicted, (B) normal 
probability against residual, (C) residual against the run number, and (D) predicted 

against actual response values response for biogas yield. 

Figure 2 shows the perturbation plot, which presents the interaction between all the 
process parameters at the center of the response to biogas yield. The influence of individual 
process parameters from the selected reference point is also discovered from the perturbation 
plot, while all other variables were kept constant (Qiu et al., 2014). For this particular study, the 
reference point was chosen at the center of the design space, and this was the zero-coded level 
of the individual feature. It can be observed that in temperature (A), the biogas yield was noticed 
to increase. This is due to the ability of methanogenic bacteria to thrive well when the 
temperature is in the mesophilic range. In contrast, increasing temperature beyond the recorded 
value will decrease biogas yield. At the point indicated in this Figure, the methanogenic bacteria 
are already saturated, and a subsequent increase in temperature makes the bacteria 
uncomfortable. This is agreed with a previous report on a similar study (Martínez-Gutiérrez, 
2018; Franqueto, da Silva and Konig, 2020). As the retention time (B) increases, the biogas 
yield increase until a point is reached when a further increase in retention period does not 
translate into biogas yield. At this point, the feedstocks available in the digester for 
methanogenic bacteria activities have reduced drastically, and as the feedstock keeps declining, 
the biogas yield will also decrease (Haryanto, Triyono and Wicaksono, 2018). Likewise, this 
Figure indicates that as the percentage of jatropha cake is increasing in the mixing ratio, 
improvement in biogas yield was noticed. When the mixing ratio was 50: 50% (cow dung : 
jatropha cake), the biogas yield reached its optimum condition. At these, the nutrient for 
optimum performance of the methanogenic bacteria is achieved. Further increase in jatropha 
cake and reduction in cow dung resulted in imbalance in the nutrient in the digester. This reports 
support what was previously reported in a similar study of co-digestion process of animal waste 
and crop residue (Adebayo, Jekayinfa and Linke, 2000). The biogas yield was majorly 
influenced by the temperature (F = 26.15, p < 0.0001), as shown in Table 3. 
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Figure 2: Perturbation analysis plot of anaerobic co-digestion of cow dung and jatropha 
cake. 

3.3 Interactive effects of process parameters on biogas yield 
To study the interactive influence between the process parameters and biogas yield, three-

dimensional (3D) plots were produced from the model. One input variable was kept constant, 
and the values for other variables were varied. The interactive 3D surface plots of the 
forecasted biogas yield (response) from the relationship between the process parameters 
selected are presented in Figure 3. Figure 3A illustrates that the biogas generation improves 
with a rise in temperature until 34 °C; beyond that, biogas yield starts to decrease with an 
increase in process temperature. Methanogenic bacteria have specified temperature ranges for 
optimum performance and are susceptible to temperature changes. Higher temperatures during 
anaerobic digestion can lead to an increase in volatile fatty acids (VFAs) that will change the pH 
of the process, and bacteria are sensitive to pH changes (Shrestha et al., 2020). Previous 
investigations also recorded that temperature beyond a particular range negatively affects 
methanogenic bacterial activities (Sathish and Vivekanandan, 2016; Safari et al., 2018). The 
interactive effect between the mixing ratio and temperature on biogas yield is presented in 
Figure 3B. The biogas released was noticed to improve with an increase in temperature 
compared to the mixing ratio. Improving the combined influence between temperatures with a 
percentage mixing ratio improved the biogas release. The optimum biogas yield was noticed 
when the variables reached the optimum conditions. The subsequent increase in temperature 
and percentage mixing ratio resulted in biogas yield declining drastically. As can be observed 
from the response surface curve, the influence of temperature was more pronounced compared 
to the percentage mixing ratio when retention time was kept constant. The same trend was 
noticed in Figure 3C, indicating that biogas yield depends on mixing ratio and retention time. 
The biogas yield was enhanced with an increased mixing ratio and retention time until both 
process parameters reached their maximum point. A subsequent increase in these variables led 
to a decline in biogas yield. The most suitable conditions for optimum biogas production from 
anaerobic co-digestion of cow dung are examined by response surface methodology analysis 
and predicted by optimal tools employing “Design Expert 13.0”. The optimum condition noticed 
from the experimental results are temperature (38 C), retention time (25 days), and mixing ratio 
(50% cow dung and 50% jatropha cake). 
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Figure 3: 3D response surface plot of biogas yield: (A) interactive effect of retention time 
and temperature, (B) interactive effect of mixing ratio and temperature, and (C) 

interactive effect of mixing ratio and retention time. 

4. Conclusion  
 The optimum biogas yield was successfully generated from anaerobic co-digestion of 
cow dung and jatropha cake. This study has substantiated that cow dung and jatropha cake co-
digestion can enhance biogas release. It was also discovered that temperature is the most 
significant process parameter, followed by retention time and mixing ratio. This study showed 
that a maximum biogas yield of 1.8 L/Kg VSadded was recorded at the optimum process 
conditions at a temperature of 38 °C, retention time of 25 days, and 50% cow dung and jatropha 
cake with the desirability of 0.8390 (84%). The findings of this study provide vital information to 
enhance the efficiency and stability of co-digestion of cow dung and jatropha cake. The model 
can be employed to forecast the biogas yield to save time and cost.  
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