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Introduction 
The World Bank Progress Indicators have proven that practically every imaginable 
development aspect of life and society is strongly linked to energy usage (Berrada and 
Laasmi, 2021).Researchers have been looking for alternative sustainable energy generation 
methods due to growing concerns over the depletion of fossil fuels and climate change(Ismail 
et al., 2014). From this vantage point, green hydrogen is one of the most promising alternative 
energy sources. Hydrogen does not produce toxic gases during its production and combustion 
process, making it suitable for use in various applications that utilise fossil fuels(Mazloomi et 
al., 2012). There are several existing or in-development technologies for producing hydrogen 
from renewable energy sources like solar or wind. These methods include proton exchange 
water electrolysis (PEM), alkaline water electrolysis (AWE), and solid oxide water electrolysis 
(SOWE). The most advanced method is alkaline water electrolysis (AWE), which is 
commercially accessible for large-scale hydrogen production(Amores et al., 2017). 
 
Alkaline water electrolysis 
The primary benefit of alkaline water electrolysis over other water electrolysis is that it can be 
constructed from readily available and affordable materials. Simple Nickel and steel can be 
used as electrodes to produce oxygen and hydrogen(Stolten, 2010). In a typical AWE, the 
electrodes are submerged in a strongly alkaline aqueous solution, usually made of 20–40 wt.% 
concentrated potassium hydroxide. The anode and cathode are separated by a porous solid 
material (diaphragm) that allows the passage of (OH) ions between the electrodes to prevent 
mixtures that could result in safety risks and poor faradaic efficiencies. AWE can produce 
hydrogen gas of great purity (99.9% purity)(Millet and Grigoriev, 2013). On the weak point, 
Alkaline water electrolysers operate at a modest current density, are not particularly compact, 
and are not entirely suitable for use with transient power sources(Stolten, 2010). Thus, despite 
the technology's established maturity, it is still the subject of research and development. For 
instance, advanced electrocatalysts are being developed to reduce electrode 
overvoltage. Gap-zero configurations are also exploited for higher current density operation 
and reduction of ohmic losses(Sanchez et al., 2020). The design and improvement of 
electrolysis systems can also benefit from modelling and process simulation. Process 
simulation can help gain insight into the system's performance without the trouble of running 
experiments(Fragiacomo and Genovese, 2019). 
 

Objectives 
This research aims to use artificial intelligence as a cutting-edge technique to optimise process 
efficiency. However, this paper focuses on Simulink process modelling of the AWE and 
analysis of the effects of process variables on the electrolysis performance. Mathematical 
descriptions are used to model the alkaline water electrolyser, and the performance of the 
process is examined in relation to variables such as current density, temperature, and 
pressure. Artificial Neural Network is used to prove the effectiveness of AI for prediction and 
optimisation. 
 

Model conception 
Following the study's purpose, only the electrolyser stack is modelled. Simulink is utilised as 
the modelling software due to its ability to implement visual tools for computational simulations. 
Simulink provides an extensive library of algorithms and custom function blocks necessary to 
incorporate mathematical models to build and analyse the process performance. Although 
Simulink includes an electrolysis component, the latter is rather elementary. It would not allow 
for a systematic study of the electrolyser's performance. Therefore, a custom electrolyser 
model has been developed, considering all parameters necessary to satisfy the project's 
purpose. 
The electrolyser model is able to accurately calculate cell voltage(E), current density(I), energy 
efficiency, faraday efficiency(η), over-voltages and hydrogen yield at various operating 



conditions. With the ability to operate over a broad range, this model is a valuable tool for 
studying the effect of parameters such as pressure(p), temperature(T), and current density(I) 
on the performance of the electrolyser. The suggested model also serves as an effective 
method to systematically optimise the efficiency of the electrolysis process. The added ANN 
(artificial neural network) experiment shows that AI can be used to further optimise the 
process. 
 
Simulink model 
As aforementioned, the Simulink model of the alkaline electrolyser is developed to investigate 
correlations between the process variables and the electrolyser performance in order to 
improve efficiency. 
Cell/stack voltage (E), Faraday efficiency, cell efficiency, polarisation curve, and H2 produced 
are determined using Electrochemical, thermodynamic and empirical equations for a wide 
operating range of input variables (power(w), temperature (T), pressure (p), number of 
cells(N), active area(A)). see figure 1. 
 

 
Figure 1 .AWS Simulink model operation flow 

 

Methodology  
In Alkaline water electrolysis, water molecules' separation into gaseous oxygen and hydrogen 
happens when an electrical current (DC) is passed between two electrodes separated by an 
aqueous electrolyte with strong ionic conductivity (typically KOH ranging from 20 to 40% by 
weight)(Rashid et al., 2015). The electrolysis process is defined by the dynamics of reactions, 
thermodynamics, and various transport processes occurring at the electrodes(Santos et al., 
2013). Alkaline water electrolysis occurs according to the following reactions: 
 

Anode     4OH- (l)  → 02 + + 2H20+ 4e requires 0.4V   E0 = -0.4V 

Cathode   2H20 (l) + 2e  → H2 + 2OH- requires 0.82V   E0 = -0.83V 

Net           2H20 (l)   → 2H2 + 02 requires 1.24V   E0 = -1.23V                 (Eq.1) 

 
 
1.23V is the minimum voltage required for the reaction to take place. It is known as reversible 
voltage (Erev), measured at standard conditions (1 bar and 25 °C). It can be obtained from the 
first law of thermodynamics, which states that the amount of electricity (nFE) needed to split 
a mole of water at equilibrium is equal to the Gibbs free energy change (ΔG0) of the 
reaction(Ursua et al., 2011). 
 

ΔG0 = nFE  

E = ΔG0/nF   (Eq.2) 

 



 
Where F is the faraday coefficient, and n=2 is the number of electrons transferred  
the Gibbs free energy can be calculated from the following equation 
 

ΔH (T, 1) =ΔG (T, 1) + T ⋅ ΔS (T, 1)         (Eq.3) 

ΔH(T,1), ΔSd (T,1) are, respectively, the enthalpy change, the entropy change) at T (25 0C) 

and P (1 bar)  

 
The reversible voltage (Erev) can also be calculated using empirical equations under different 
temperatures and pressure than standard conditions. Empirical equations presented by 
(Stolten, 2010) are used to calculate Erev as a function of temperature (Eq.4), and (Eq.5) is 
used to account for both temperature and pressure. 
 
Erev(T) = 2 F ΔG(T) = 1.5184 − 1.5421 × 10−3 ∗ T + 9.523 × 10−5 ∗ T ∗ Ln(T) + 9.84 × 10−8 T2  

(Eq.4) 

When taking into account the cell pressure, Erev can be calculated as follow: 

Erev (T, P) =𝐸𝑟𝑒𝑣(𝑇) +
3𝑅𝑇 

4𝐹
ln(𝑃)        (Eq.5) 

 
However, due to energy losses, the actual cell voltage (E) is always larger than the theoretical 
one. The actual cell voltage (E) is the sum of reversible voltage (Erev) and overpotentials (ή) 
(Amores et al., 2017) (see Eq.6).  
 
Ecell = Erev +( ήat+ ήohm+ ήconc)        (Eq.6) 

 
ή (overpotential) is the sum of activation, ohmic and concentration overpotentials caused by:  
 
Activation overpotentials: associated with the activation energies for the generation of 
hydrogen and oxygen on the surface of electrodes. 
 
Ohmic overpotential: refers to the sum of transport resistance due to gas bubbles, ionic 
transfer in the electrolyte, and membrane resistivity, together with the electrical resistance of 
various components, such as electrodes and current collectors. 
 
Concentration overpotentials: caused by mass transport restrictions that arise at high currents 
on the surface of the electrodes(Amores et al., 2017). 
 
 
The overpotentials are represented on the polarisation curve in figure 2. The polarisation curve 
is used to establish the electrolysis kinetics reactions. It allows for determining the ideal cell 
voltage and current density(Ursua et al., 2011). 
 



 
Figure 2 alkaline electrolysis polarisation curve at 25 and 80 0C 

 
A semi-empirical approach (Eq. 7) introduced by (Ulleberg, 2003) and further modified by 
(Sanchez et al., 2020) has been used to calculate the cell overpotential (Ecell) for the model. 
The equation relates temperature(T), pressure(p) and current density(i) to the polarisation 
curve. concentration overpotential is omitted from the equation as it only occurs at high current 
density, passed the operating range of the model. 

 

Ecell = 𝐸𝑟𝑒𝑣 + [(𝑟1 + 𝑑1) + 𝑟2. 𝑇 + 𝑑2. 𝑝] + 𝑆. log [(𝑡1 +
𝑡2 

𝑇
+

𝑇3

T2
) 𝑖 + 1] 

(Eq. 7) 
 
 
Another critical parameter for evaluating AWE performance is the faraday efficiency (Eq. 8). It 
represents the ratio of the experimental hydrogen gas produced to the theoretical value. It 
refers to the amount of current transformed in the reaction and the energy lost due to 
losses(Santos et al., 2013). 

𝜂𝐹 =
nH2 prod

nH2th
  (Eq. 8). 

 
Much like the polarisation curve, Faraday's efficiency has also been modelled using the 
empirical equation proposed by (Ulleberg, 2003). 
 
 

𝜂𝐹 = (
i2

f11+f12.T+I2
) . (𝑓21 + 𝑓22. 𝑇)     (Eq.9) 

 
 
There is a direct correlation between the flow of electrons (current) and the production rate of 
hydrogen (Faraday's Law). The electrochemical behaviour of the cells influences the rate of 
hydrogen generation at the cathode. Hydrogen production at the cathode was computed using 
a derived equation of the Faraday efficiency    

𝑛𝐻2𝑝𝑟𝑜𝑑 = 𝜂𝐹
I

z.F
. 𝑁    (Eq.10) 

 
 
The electric input power is determined using ohm's law  
 
Wstack = Estack.I= (Ecell.N). (I. Acell)  (Eq.11) 

With N the quantity of cells in the stack. 

 
 



Figure 3 shows the electrolyser model developed using Simulink.  

 
Figure 3: alkaline cell electrolysis Simulink simulation 

 
 
ANN (artificial neural network) predictive model  
One of the most used AI modelling techniques in chemical engineering is ANN (Dutta and 
Upreti, 2021). Figure 4 shows the setup used for configuration, which consists of a three-layer 
system with three neuron inputs (temperature (T), power (P), and pressure (P), a hidden layer 
with ten nodes, and six output layers (cell efficiency, faraday efficiency, hydrogen yield, energy 
efficiency, current density, and cell voltage). BP-ANN trains the algorithm using a first-order 
gradient descent technic(Maier et al., 2000). The Marquardt-Levenberg BP learning approach 
was selected as the back-propagation method(Banza and Rutto). The log-sigmoid transfer 
function for all data sets in ANN (log sig) was employed in the hidden layers(Senthil Kumar et 
al., 2012). ANN is used to demonstrate that the process can be modelled and optimised using 
AI 
 

 
Figure 4:ANN architecture 

 

 

 

 



Results and Discussion  

The model is developed using Simulink to study the effects of pressure, temperature, and 
current density on cell performance. The insight gained will serve as a base to further optimise 
the process using artificial intelligence. 
 
Influence of temperature and on the polarisation curve 
 
Figure 5 shows the polarisation curve and the effect of temperature (25 0C-100 0C). It's 
observed that a rise in input power increases the current density and cell voltage. As discussed 
in Eq.11 current density (I/A) is proportional to the power delivered to the electrolyser. 
Therefore, an increase in the input power results in a higher current density, Cell voltage 
increases due to overvoltages caused by a higher current density (Eq. 7) 
. On the other hand, the cell voltage decreases as the temperature drops due to the decrease 
in the reversible voltage (Eq.4), which should subsequently lead to a reduction in input power. 
 

 
Figure 5: effect of temperature and current density on cell potential 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Influence of temperature and current density on efficiency and hydrogen yield 
 
Figure 6 and 7 shows hydrogen flow rate and cell efficiency at different temperatures and 
current density. Hydrogen production increases with a rise in current density. The 
phenomenon is in line with faraday's 1st law of electrolysis, which states that the quantity of 
hydrogen produced is directly proportional to the input current. The faraday efficiency (Eq.9) 
is closer to 1 at a higher current density. The cell efficiency, on the other hand, decreases with 
increased current density. Cell efficiency is related to input power and hydrogen yield. At 
higher current density, more energy loss occurs due to overvoltages leading to lower 
efficiency. The increase in temperature, however, results in higher efficiency since the 
reversible voltage diminishes at a higher temperature eq. Hydrogen yield decreases slightly 
at higher temperatures due to the drop in the faraday efficiency. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7:effect of temperature and current on cell efficiency Figure 6:effect of temperature and current on H2 yield 



Temperature and pressure optimisation 
 
Figures 8 and 9 show the effects of temperature and pressure on hydrogen production as well 
as cell efficiency, identified as essential parameters for electrolyser optimisation (Lubitz and 
Tumas, 2007). Pressure and temperature could be used to optimise the process when input 
power is lower than the desired value. It shows that when the current density is lower, 
efficiency and hydrogen production can be kept at the desired value by lowering the pressure 
and increasing the temperature   
 

 

 

ANN model and prediction 

figure 10. shows the way the network and data interact. The correlation coefficient for training, 
testing, validation and all data is 1. It entails that the ANN predict the output data with almost 
perfect accuracy 

Figure 9:effect of pressure and temperature on H2 yield Figure 8:effect of pressure and temperature on 
efficiency 



 

Figure 10: neural network regression analysis 

 

conclusion 

This paper proposes a Simulink model of an alkaline electrolyser with the objective of studying 
the influence of the process parameters such as pressure, temperature and current density 
on the electrolyser performance.  

The developed stack electrolyser model is able to generate a polarisation curve, faraday 
efficiency, cell efficiency and hydrogen yield at various temperatures and pressures. 

Analysis of the model data shows that at higher current density, the efficiency of the 
electrolyser decreases due to overvoltages. However, hydrogen yield increases since it is 
proportional to the current density in the cell. An increase in temperature can improve 
efficiency by reducing the cell voltage. Currently, the cell temperature of alkaline electrolysers 
is restricted to a maximum of (1000C-1300C) due to corrosion of components under high 
temperature alkaline medium. It has been observed that at lower values (5-10 bar), pressure 
has a negligible effect on the hydrogen yield. The cell efficiency, on the other hand, decreases 
with increased pressure due to the increase in potential energy. Nonetheless, running the 
electrolyser at higher pressure reduces the energy needed to compress hydrogen for storage.  

For process optimisation, finding a proper equilibrium between cell efficiency and hydrogen 
yield while considering the constraints related to high temperature, pressure, and current 
density should allow for better optimisation of the electrolyser performance. At reduced input 



power, the efficiency of the electrolyser could still be maintained by lowing the pressure and 
increasing the temperature.  

The implementation of ANN(artificial neural network) successfully proved that AI could be used 
to model and further optimise the process. the ANN has been trained Levenberg BP learning 
approach and was able to predict the output data with very high accuracy(R=1) 

The knowledge gained from this work will be used to build a data driven algorithm for improved 
process control and optimisation.   
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