Making solar the cheapest form of energy

Jon Bøhmer Founder & CEO Product designer, inventor, social entrepreneur

Memes Networks 2011

World Energy Production

Some countries must undertake massive switch from fossil Others have massive underserved demand

Solar potential of Africa

South Africa has world-class solar resources

Growth in renewables in Africa

Frost and Sullivan, 2011

Choosing Energy Sources KYOXO

	Solar	Wind	Geo	Hydro	Coal	Diesel	Nuclear
Heat	V	-	V	-	V	V	
Electricity	/		/	V	V	V	~
Deforestation	V	_	_	-	×	-	-
Climate Change	V		/	X	X	X	~
Import reliance			/	V	V	X	×
Water scarcity	V		-	X	X	/	×
Peak Oil			/	V	-	X	
Safety	V		/				×
Resource scarcity			/	×		X	_
Price uncertainty			/	V		X	_
Distributed energy			×	×	-		×
Local manufacturing			-	-	-	-	X
Cost			/		V	_	×
Total	+13	+11	+8	+2	+1	0	-2

Solar energy can be very simple

Kyoto Box - \$25

"There is nothing new under the sun" - Ecclesiastes 1:9-14

The first known mirror - made from obsidian Turkey, 8000BC

Augustine Mouchot's Solar Printing Press, Toulouse, France 1888

KYOZO

"Some day some fellow will invent a way of concentrating and storing up sunshine." Thomas Edison, 1910

Professor Ciamician Pioneer of Photochemistry

New York Lecture 1912

"On the arid lands there will spring up industrial colonies without smoke and without smokestacks; forests of glass tubes will extend over the plants and glass buildings will rise everywhere; inside of these will take place the photochemical processes that hitherto have been the guarded secret of the plants, but that will have been mastered by human industry which will know how to make them bear even more abundant fruit than nature, for nature is not in a hurry and mankind is.

And if in a distant future the supply of coal becomes completely exhausted, civilization will not be checked by that, for life and civilization will continue as long as the sun shines! If our black and nervous civilization, based on coal, shall be followed by a quieter civilization based on the utilization of solar energy, that will not be harmful to progress and to human happiness".

ΚΥΟΧΟ

Our innovation process

Kyoto Design Criteria

Low cost

- Robust
- Commodity materials
- Container transportation
- Simple in-field assembly
- No digging or leveling
- No cranes or power tools

Development Timeline A 10+ year journey

\$1.5M invested to date

\$1.0M \$5.0M

ldea and experimentation	Design 7 form factors	Prototyping Test Deployment
2000	2005	2012 2013
The second secon	e form factors explored	

Parabolic cooker with fiberoptic transport 2000

Dish concentrator with Cassegrain secondary 2006

2009 Mosaic optic with movable secondary

Heliostat / Tower

KXOXO

Large scale - 50MW Large heliostats -100m2 150m towers

Introducing Butterfly Solar Farms

ALC: N

Butterfly Heliostat

2,5m² 25kg

Low cost

KYOXO

- Made from plastic and aluminum
- Light weight, high precision tracking
- Made in existing local factories
- The complexity and size of a bicycle

Butterfly Heliostat

2,5m² 25kg

No steel, glass or concrete
Simple in-field assembly
No digging or leveling
No cranes or power tools

BM

Mirrors

Plastic substrate

KYOTO

- 3M mirror foil laminated
- Unbreakable, light weight

KyotoGear

Traditional

- Dual axis gear
- Complicated
- Not easy to mass produce

- Wheel and axle
- Plastic gears
- Triple worm gears
- 15 000:1 ratio
- Low cost motors

Heliostat Controller

Utilizing the latest advances in motion sensing
Compass, gyro
Extreme precision at low cost
Solar powered, no field wiring

Heliostat Controller

- Wireless mesh communication
- Mobile phone control
- Targeting
- GPS, time input
- Errors, status, controls

Heliostat Costs, \$/m²

Complete value chain re-engineering

Butterfly Field Layout

•

25m tower (pole) with 100 heliostats = 50kW module

KTOYO

Butterfly Field Layout

	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Electr
10	0 Heliostats				HOT W
			· · · · · · · · · · · · · · · · · · ·	********	
	<u><u>+</u></u>	<u> </u>	<u>±</u>	<u> </u>	

1MW field 7 acres

The Butterfly Receiver

38.5% efficiency

KYOXO

Array of high-efficiency CPV solar cells with water cooling (Co-Gen)

The Butterfly Receiver

KYOX0

Array of high-efficiency CPV solar cells with water cooling (Co-Gen)

Scissor Mast

Efficiency vs temperature

Efficiency (%)

Heat for important tasks:

 Co-generate electricity, drinking water and salt

KYOXO

- Grains, vegetables, fruits, meat, fish
 Extend shelf life to 3 years
- Reduce size/weight by up to 90%
- 50% of crops rot and are not consumed

- Freezers for slaughterhouses
- Cooling of milk for dairy farms

Desalination using waste heat **KYOXO**

Memstill plastic modules

Cooling using waste heat

Ammonia absorption

Slaughterhouses, dairy production

Energy storage

MW-size grid batteries Zinc-Air or Sodium-Ion

Low costs Off-grid comparison, US cents per kWh

Butterfly

South Africa

Currently over 20 companies and institutions involved

Butterfly is 100% manufactured in South Africa and can employ unskilled labour to achieve unprecedented scale

South Africa Research Partner

UNIVERSITEIT STELLENBOSCH UNIVERSITY

SOLAR THERMAL ENERGY RESEARCH GROUP

Testing, performance evaluation, CSP Cycle

Free is the Sun

Kyoto Energy Ltd, Box 234, Thika, Kenya Phone: +254 725 834 494

email jon@kyoto-energy.com