

and Management

Techno-economic Optimization of CSP Plants

Towards a more competitive plant design and operation

Dr. Rafael Guédez

Researcher – Energy Department rafael.guedez@energy.kth.se

May 5, 2017

Stellenbosch University, Stellenbosch

- Introduction
 - KTH CSP R&D Group
- CSP Technology Basis
- CSP Market Today
 - Outlook, Drivers and Prices
 - Project Development of CSP plants
- Techno-economic Optimization
- KTH DYESOPT in-house tool
 - Case Study for South Africa
- Conclusions

Introduction: about me

- Lead Researcher in Solar Power (CSP and PV) and Techno-economic Modeling at KTH
- Lecturer and course responsible for Large-Scale Solar Power in KTH
- Project Manager and Performance Analyst Expert at Cleanergy AB
- Director and Solar Energy Consultant at EPS

Previous Experience

- Researcher in PV-BESS and CSP plant optimization at KTH
- R&D Engineer in Solar Energy Unit at Total New Energies
- R&D Engineer at Moroccan Agency for Solar Energy

Education

- PhD in CSP Plant Techno-Economic Performance Modeling KTH
- Mechanical Engineering Universidad Simon Bolivar (Venezuela)

Introduction: KTH

- Sweden's oldest Technical University
- Founded in 1827
- +12000 students
- 10 Schools
- World Rankings:
 - 36 (Times Engineering 2017)
 - 25 (QS Top Universities Energy Engineering 2016)

Introduction: KTH

- Sweden's oldest Technical University
- Founded in 1827
- +12000 students
- 10 Schools
- World Rankings:
 - 36 (Times Engineering 2017)
 - 25 (QS Top Universities Energy Engineering 2016)

Introduction: KTH CSP R&D Group

Dr. Björn Laumert. Assoc. Professor

Dr. Rafael Guédez Researcher

Dr. Wujun Wang Post-Doc

Lukas Aichmayer PhD Candidate

Monika Topel PhD Candidate

Jorge Garrido PhD Candidate

Monica Arnaudo PhD Candidate

- Thermo-mechanical analysis and testing of solar power plant components. •
- Techno-economic optimization of solar power plant design and operation.
- Thermal energy storage integration and hybridization strategies. ٠
- Receiver design and testing at indoor solar simulator •

Introduction: KTH CSP R&D Group

- + 20 MSc Students and affiliates
- In close collaboration with industry and other R&D institutes

CSP: Technology Basics

CSP Market Today

China 1 GW - Morocco 0.7 GW

CSP Deployment Drivers

- Technical: Renewable and dispatchable (highly efficient and reliable storage)
- Macroeconomic: Local content of CSP plants is one of largest for renewable projects
- Technical Developments Higher efficiencies
- Cost Developments:

CSP 2030 Market Outlook and Scenarios

SOLARPACES - ESTELA (2016)

* For a 200\$/kWh combined battery and battery BOS costs and increased lifetime * For PV systems (module + BOS) of 1\$/W

CSP Market Outlook: Prices

- CSP is generally seen as less competitive on the basis of \$/MWh
- We are seeing aggresive PPA bids, yet higher than other renewables e.g. PV
- It is now being understood that its value relies on its dispatchable attribute.

This has led to tech-specific tenders with time-of-use tariffs (hourly)

This means that the optimum design and operation of each plant is unique to each tender and location

There are multiple stakeholders involved in the value-chain of the development of a CSP plant under a competitive bid tender

Each one with different interest \rightarrow so PPA price is not the only design objective

This makes the optimum design and operation more challenging and also dependent on the actual stakeholder

CSP Techno-economic Modeling

a number of design objectives shall be considered in the evaluation of CSP plants and also dependent on the stakeholder

These are all relevant decision criteria and often conflicting

Optimization Trade-offs

CSP Performance Indicators

TECHNICAL

Annual Yield (E_{net}) [GWh]

Capacity Factor (CF) [%]

Annual Yield

 $8760 \times Nominal Capacity$

ENVIRONMENTAL

Annual Specific CO₂ Emissions [kg CO₂/MWh]

 $\frac{Annual\ CO_2\ Emissions}{Annual\ Yield}$

FINANCIAL (Costs)

Investment Costs (CAPEX) [\$]

Annual Operational Costs (OPEX) [\$/y]

CSP Performance Indicators

FINANCIAL (Performance)

Levelized Cost of Electricity [\$/MWh]

Disc.CashOutflows Disc.ElectricityGeneration

LCOE = f(CAPEX, OPEX, Yield, DR)

$$DR = WACC = f\left(\frac{Eq}{Debt}, IRR_{Eq}, i_{debt}\right)$$

Constant price for breakeven

Internal Rate of Return (IRR) [%]

 $IRR = DR \rightarrow NPV = 0$

 $NPV = \begin{cases} Disc. Cash inflows \\ -Disc. Cash outflows \end{cases}$

Project acceptable if IRR Project > IRR min (owners)

Higher IRR project → better

CSP Performance Indicators

FINANCIAL (Performance)

Levelized Cost of Electricity [\$/MWh]

Disc.CashOutflows Disc.ElectricityGeneration

LCOE = f(CAPEX, OPEX, Yield, DR)

$$DR = WACC = f\left(\frac{Eq}{Debt}, IRR_{Eq}, i_{debt}\right)$$

Constant price for breakeven

min Price at which IRR project ≥ WACC

Tue

Wed

Thu

Sat

Sun

Mon

Different from LCOE depends on hourly tariff schemes and usually public numbers relate to average or base PPA price

Fri

CSP Techno-economic Modeling

a number of design objectives shall be considered in the evaluation of CSP plants and also dependent on the stakeholder

These are all relevant decision criteria and often conflicting

Optimization Trade-offs

The Dynamic Energy System Optimizer is a simulation tool developed for the techno-economic design and operation optimization of power plants

- With +7 years of R&D in academia
- With +30 publications as part of +8 R&D projects with industry

DYESOPT

for power plant design and operation

technical + financial plant performance models tailored to <u>requested</u> degree of detail

Power Plant Modeling in DYESOPT

Process 1: Power Plant Nominal Design

Nominal design for specific conditions e.g. Solar positioning and Irradiance (Location)

VALIDATED SUB-COMPONENT THERMODYNAMIC MODELS

MULTI-PARAMETER

SOLAR FIELD SIZE (SM) Mirror area / reflectivity Receiver Rating / geometry Tower height

> TES CAPACITY Tank specs Loss Coefficients Minimum tank levels

POWER BLOCK CAPACITY Cycle Layout Design Live steam and reheat conditions

INPUTS: plant size, weather, TES dispatch-strategy, start-up limitations

Example: Simplified model of a 100 MWe molten salt CSP tower plant with 6h storage (TES) for spot market in Seville, Spain

OUTPUTS: hourly generation, yield, capacity factor, ...

Process 3: Techno-Economic Calculations

BOTTOM-UP COST MODEL – LOCATION AND TECH DEPENDENT

Ref. Data: Literature / Quotations / Industry Reports / Industry coop

Process 4: Multi-Objective Optimization

To identify Trade-Off Curves between conflicting objectives

To provide decision-makers with universe set of solutions

A, B and C are optimal configurationsD is sub-optimal (*'naive design'*)

Genetic Algorithims used to address:

- Discontinuities / non-linearity
- Local optima

OBJ 1: Minimize Investment (CAPEX) **OBJ 2:** Maximize Profits (IRR_{PROJECT})

Location Data (i.e. Meteo & economics)

- Technical Reports
- Industry

DYESOPT – Case study

Sizing and operation of sub-blocks has a clear impact PB size, SF size, TES size and dispatch are decisive

Case Study: Influence of Price Tariffs

Case Study I: Influence of Price Tariffs

		TES	SM	Tower height	Operating Strategy			F _{cap} [%]	IRR [%]		
		ניין	L-J	[m]	Strategy	[030×109]			S1	S2	S3
Α	110	4	1.35	176	Peaking	371.8	106.5	38.6	24.4	-1.2	11.4
В	110	14	2.60	235	Peaking	635.0	89.4	74.6	18.7	2.6	10.9
С	110	1	1.38	186	Continuous	353.1	99.6	39.5	20.9	0.5	13.3

Optimums are different for different market conditions

One should not compare projects built under different conditions / locations

DYESOPT: Power Plant Models

- Molten Salt Solar Tower Plant (e.g. Crescent Dunes type)
- Molten Salt Solar Tower Plant with Thermocline Storage Tank
- Direct Steam Generation Tower Plant (e.g. Ivanpah)
- Parabolic Trough CSP Plant
- Hybrid Solar Gas Turbine Power Plant
- Hybrid Parabolic Trough CSP Plant (e.g. Shams)
- Hybrid Solar Tower with 2-tank TES and PV (e.g. Midelt CSP)
- Utility-scale PV power plant (optional BESS and tracking)
- Combined Heat and Power (CHP) Plant
- Combined Cycle Gas Turbine (CCGT) Plant

Models can be used to:

- Evaluate performance of specific plant configurations
- Identify optimum plant configurations for a location
- Determine impact of using new technology and components
- Evaluate feasibility of new power plant concepts and hybrids
- Determine impact of storage and operation strategies
- Determine impact of technical operational enhancements

to assist investment and decision-making

Research – Policy – Developers – OEMs Engineering (EPCs) – Investors – Operators

- CSP is positioning as the most competitive solar-only technology for large capacity factors its deployment though requires of adequate policy design
- The design and operation of a power plant is dependent on the location and policies i.e. weather, remuneration schemes, and financials
- At KTH we work on understanding the impact of tender design, cost projections and technology advancements on the optimum design and operation of CSP plants. We collaborate with R&D and industry.
- This work is needed to support decision making throughout the whole value chain: R&D Policy Development Engineering Operation
- We have started a collaboration with STERG in which we share modeling tools and experience for joint publications
 - we look forward to expanding our collaboration.

and Management

Techno-economic Optimization of CSP Plants

Towards a more competitive plant design and operation

Dr. Rafael Guédez

Researcher – Energy Department rafael.guedez@energy.kth.se

May 5, 2017

Stellenbosch University, Stellenbosch

