Techno-economic Optimization of CSP Plants

Towards a more competitive plant design and operation

Bt

KTH Industrial Engineering
and Management

Dr. Rafael Guédez May 5, 2017

Researcher — Energy Department Stellenbosch University, Stellenbosch
rafael.guedez@energy.kth.se




Agenda

. Introduction
. KTH — CSP R&D Group
«  CSP Technology Basis
«  CSP Market Today
. Outlook, Drivers and Prices
. Project Development of CSP plants
Techno-economic Optimization
. KTH DYESOPT in-house tool
«  Case Study for South Africa
«  Conclusions

R. Guédez — CSP Overview and Techno-economics Stellenbosch, May 5, 2017



Introduction: about me

* Lead Researcher in Solar Power (CSP and PV) and Techno-economic Modeling at KTH

«  Lecturer and course responsible for Large-Scale Solar Power in KTH E ‘{

*  Project Manager and Performance Analyst Expert at Cleanergy AB

«  Director and Solar Energy Consultant at EPS CLEANERGY

Previous Experience

 Researcher in PV-BESS and CSP plant optimization at KTH o ToTAL
« R&D Engineer in Solar Energy Unit at Total New Energies @ nrasen
* R&D Engineer at Moroccan Agency for Solar Energy

Education
« PhD in CSP Plant Techno-Economic Performance Modeling — KTH
*  Mechanical Engineering — Universidad Simon Bolivar (Venezuela)
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* Sweden’s oldest
Technical University

* Founded in 1827
« +12000 students
« 10 Schools

« World Rankings:

* 36 (Times - Engineering 2017)

* 25 (QS Top Universities — Energy
Engineering 2016)
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Introduction: KTH CSP R&D Group

A

Dr. Bjérn Laumert, Dr. Rafael Guédez Dr. Wujun Wang Lukas Aichmayer Monika Topel Jorge Garrido Monica Arnaudo
Assoc. Professor Researcher Post-Doc PhD Candidate PhD Candidate PhD Candidate PhD Candidate

« Thermo-mechanical analysis and testing of solar power plant components.
« Techno-economic optimization of solar power plant design and operation.
 Thermal energy storage integration and hybridization strategies.

* Receiver design and testing at indoor solar simulator
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« + 20 MSc Students and affiliates

* In close collaboration with industry
and other R&D institutes
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CSP: Technology Basics

THERMAL ENERGY STORAGE
(TES)
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© Torresol Energy

3 Main Blocks: Solar Field, TES, Power Block
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CSP: Technology Basics
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CSP Market Today

Tendered

6 — ?stallc_atd - Under
apacity Construction

80% 2% 50% 50%

T Parabolic Trough Tower
Parabolic Trough * *

70% w/ STORAGE 100% w/ STORAGE

Spain 2.4 GW - USA 1.9 GW China 1 GW - Morocco 0.7 GW
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CSP Deployment Drivers

* Technical: Renewable and dispatchable (highly efficient and reliable storage)

* Macroeconomic: Local content of CSP plants is one of largest for renewable projects
+ Technical Developments — Higher efficiencies

* Cost Developments:
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CSP 2030 Market Outlook and Scenarios

SOLARPACES - ESTELA .
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Experience Curve Projections
* For a 200$/kWh combined battery and battery
BOS costs and increased lifetime
* For PV systems (module + BOS) of 1$/W
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CSP Market Outlook: Prices

CSP is generally seen as less
competitive on the basis of $/MWh

Chile 2016

DNI: 3400

220 MW Tower
14h TES

We are seeing aggresive PPA bids,

yet higher than other renewables e.g. PV 30 85* UAE 2017
DNI: 2200
It is now being understood that its value 25 $/MWh 8-10h TES
relies on its dispatchable attribute. !
§ 20
This has led to tech-specific tenders § _E::dzgz
with time-of-use tariffs (hourly) ;ﬁ 15
This means that the optimum design 1o A @
and operation of each plant is unique e
to eaCh tender and Iocation 2005 2010 2015 2020 20256 2030

* Expected in DEWA tender
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CSP Project Development: Bid Tenders

There are multiple stakeholders involved in the value-chain
of the development of a CSP plant under a competitive bid tender

Each one with different interest = so PPA price is not the only design objective

Tender Design Project Proposal Evaluation Secure Financing Englneerln_g & Operation
Construction
DEVELOPER DEVELOPER
A 44 A A A

DEVELOPER

1

: A A A
11

11

(o}

111

1 1 1 1 11
TECH OWNER TECH OWNER GRID OPERATOR
TECH OWNER

This makes the optimum design and operation more challenging
and also dependent on the actual stakeholder
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CSP Techno-economic Modeling

a number of design objectives shall be TECHNICAL
considered in the evaluation of CSP plants
and also dependent on the stakeholder

High Efficiencies
High Availability

These are all relevant decision ‘\o Ease to Operate
criteria and often conflicting Ny %,
<P %
< Vo
‘ “
Low Costs <

specific CO,

High Profits

Optimization Trade-offs Raw materials

Local Content
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CSP Performance Indicators

TECHNICAL ENVIRONMENTAL

Annual Yield (E,.) [GWh]
Annual Specific CO, Emissions

Capacity Factor (CF) [%] [kg CO,/MWh]
Annual Yield Annual CO, Emissions
8760 X Nominal Capacity Annual Yield

FINANCIAL (Costs)

Investment Costs (CAPEX) [$] Annual Operational Costs (OPEX) [$/y]
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FINANCIAL (Performance)

Levelized Cost of Electricity [$/MWh]

Disc.Cash Outflows
Disc. Electricity Generation

LCOE = f(CAPEX,OPEX,Yield, DR)

Eq .
DR =WACC = f(@rIRREqildebt)

Constant price for breakeven
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CSP Performance Indicators

Internal Rate of Return (IRR) [%]

IRR =DR - NPV =0

vaz{ Disc.Cash inflows }

— Disc.Cash outflows

Project acceptable if
IRR Project > IRR min (owners)

Higher IRR project - better
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FINANCIAL (Performance)
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CSP Performance Indicators

Minimum PPA Price [$/MWAh]

S$1: Two-Tier Tariff
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Different from LCOE
depends on hourly tariff schemes and usually public
numbers relate to average or base PPA price
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CSP Techno-economic Modeling

a number of design objectives shall be TECHNICAL
considered in the evaluation of CSP plants
and also dependent on the stakeholder

High Efficiencies
High Availability

These are all relevant decision ‘\o Ease to Operate
criteria and often conflicting Ny %,
< O 4’6‘
< Vo
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Low Costs <

specific CO,
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Optimization Trade-offs Raw materials

Local Content
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DYESOPT - Power Plant Modeling

The Dynamic Energy System Optimizer is a simulation tool developed for the
techno-economic design and operation optimization of power plants

=  With +7 years of R&D in academia
=  With +30 publications as part of +8 R&D projects with industry

DYESOPT

for power plant design
and operation

technical + financial plant performance
models tailored to requested degree of detail

R. Guédez — CSP Overview and Techno-economics
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Power Plant Modeling in DYESOPT

Design Objectives
(e.g. min LCOE and max CF)

Location H Cost Model /L/ Input Limits /

PROCESS 4: Multi-Objective Optimization

.IIIIIIIIIIIIIIIIIIIIIIIII
C Select Inputs: Tech, Financial, Weather /- LR LS
- 4 4
PROCESS 1: PROCESS 2: PROCESS 3:
Trade-Off? Power Plant Design |msssssp! Annual Dynamic |l Techno-economic
Component Sizing Simulation Calculations

Techno-Economic Indicators (e.g. LCOE)

Optimization Trade-Offs
(e.g. min LCOE vs max CF)
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Process 1: Power Plant Nominal Design
Nominal design for specific conditions MULTI-PARAMETER

e.g. Solar positioning and Irradiance (Location)

SOLAR FIELD SIZE (SM)

SOLAR FIELD TES - HTF GYCLE POWER BLOCK Mirror area / reflectivity
e e e e e e 1 Receiver Rating / geometry

Tower height

1 |

1 |

- :

|

I qu Reheater :

Po . . TES CAPACITY
I PVQ Superheater

[ : Tank specs

: Evaporator [ Loss Coefficients
I " Economizer I Minimum tank |eve|S
L <D !

1 \\EEES—g |

1 |

1 |

i |

____________ i POWER BLOCK CAPACITY

--------------- Cycle Layout Design
Live steam and reheat conditions

VALIDATED SUB-COMPONENT THERMODYNAMIC MODELS
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Process 2: Annual Dynamic Simulation

INPUTS: plant size, weather, TES dispatch-strategy, start-up limitations

700 | ‘ 280 3"
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Example: Simplified model of a 100 MWe molten salt CSP tower plant with 6h storage (TES) for spot market in Seville, Spain

OUTPUTS: hourly generation, yield, capacity factor, ...
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Process 3: Techno-Economic Calculations

BOTTOM-UP COST MODEL - LOCATION AND TECH DEPENDENT

Local Economics

Cog Cs Cies Coec (e.g. discount rate)

CDlRECT
Csite CBOP CtOW Ccont } CAPEX [$] \ ‘

LCOE [$/MWh
CDEV—EPC CIand Ctax }ClNDIRECT > IRR[T:O/] ]
0

Clab Cser Cuti Cmisc } OPEX [$/y] j Mark tCt diti
darKe ondaitions

(e.g. electricity price)

Cn = Cref'n(Xn/Xref,n)yn

Ref. Data: Literature / Quotations / Industry Reports / Industry coop
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OBJECTIVE 1

Process 4: Multi-Objective Optimization

To identify Trade-Off Curves between conflicting objectives

High | Optimal Front High
C
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B 5 2
—————— _<
A D §
Low ] H ] ] Low
CAPEX [$] High
OBJECTIVE 2
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To provide decision-makers with
universe set of solutions
A, B and C are optimal configurations

D is sub-optimal (‘naive design’)

Genetic Algorithims used to address:
« Discontinuities / non-linearity

 Local optima

Stellenbosch, May 5, 2017



DYESOPT - Case study

OBJ 1: Minimize Investment (CAPEX)
OBJ 2: Maximize Profits (IRRpro ecT)

S1: Two-Tier Tariff
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DYESOPT - Case study
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Sizing and operation of sub-blocks has a clear impact

PB size, SF size, TES size and dispatch are decisive
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Case Study: Influence of Price Tariffs
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Case Study I: Influence of Price Tariffs

L A DNl ——— Price ——— Air Temp. ‘ B DNI Price Air Temp. L C rice ir Temp.
ic | TEs | sm Ig:’;ﬁ: Operating | CAPEX o IRR [%]
MW h - trat Dx10°¢ D/MW cap
[MW,] | [h] | [ [m] Strategy | [USD*10°] | [USD/MW,] s1 | s2 | s3
110 4 1.35 176 Peaking 371.8 106.5 38.6 244 | 1.2 [ 114
110 14 | 2.60 235 Peaking 635.0 89.4 74.6 18.7 | 2.6 | 10.9
110 1 1.38 186 Continuous 353.1 99.6 39.5 209 | 05 | 13.3

Optimums are different for different market conditions

One should not compare projects built under different conditions / locations
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DYESOPT: Power Plant Models

. Molten Salt Solar Tower Plant (e.g. Crescent Dunes type)

*  Molten Salt Solar Tower Plant with Thermocline Storage Tank
. Direct Steam Generation Tower Plant (e.g. lvanpah)

. Parabolic Trough CSP Plant

. Hybrid Solar Gas Turbine Power Plant

. Hybrid Parabolic Trough CSP Plant (e.g. Shams)

. Hybrid Solar Tower with 2-tank TES and PV (e.g. Midelt CSP)
. Utility-scale PV power plant (optional BESS and tracking)

«  Combined Heat and Power (CHP) Plant
«  Combined Cycle Gas Turbine (CCGT) Plant
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DYESOPT

Models can be used to:

Evaluate performance of specific plant configurations
Identify optimum plant configurations for a location
Determine impact of using new technology and components
Evaluate feasibility of new power plant concepts and hybrids
Determine impact of storage and operation strategies
Determine impact of technical operational enhancements

to assist investment and decision-making

Research — Policy — Developers — OEMs
Engineering (EPCs) — Investors — Operators
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Key Takeaways

« CSPis positioning as the most competitive solar-only technology for large
capacity factors — its deployment though requires of adequate policy design

« The design and operation of a power plant is dependent on the location and
policies i.e. weather, remuneration schemes, and financials

« At KTH we work on understanding the impact of tender design, cost
projections and technology advancements on the optimum design and
operation of CSP plants. We collaborate with R&D and industry.

« This work is needed to support decision making throughout the whole value
chain: R&D - Policy — Development — Engineering — Operation

«  We have started a collaboration with STERG in which we share modeling tools
and experience for joint publications
- we look forward to expanding our collaboration.
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