9th RENEWABLE ENERGY POSTGRADUATE SYMPOSIUM

Biogas as a sustainable green solution

Horst Unterlechner September 2018

Presentation objective

To change perception of "Waste"

from a problem

into a

"Renewable resource"

Mind change

Biomass - Manure

Biomass – fruit, vegi and food waste

Biomass – Municipal Solid Waste

Energy crops - grass - hay - Silage

Typical MSW break-down

Typical Waste Stream in Africa

		uote ti	, chergy				
	Bioma	ss (orga	nic material)				
Liquid	> So					3	
Water/ liquid	Manure	Grass	Food & fruit waste	MSW	Wood	ŝ	
- U	소오	₽.	-	- 0	-0		
Westewater	WAST	ero me D	STRE	EAł	eration	10Cea	
U	- U		- 🖓		₽ –	8	
	Digestate		Biogas Sin or wood gas				
Grey water	Liquid organic	Ha	Heat & steam via biogas boller				
	fertilizer Pellet	fertilizer Electricity, heat and cooling via CHP					
L		-	D.0-1001 VI			J	
	Dener						
Grey water	Pres	Bio Bei	gas nefi		poper	Output	
Grey water	Pree	Bio Bei	gas nefi		poget	Ontbrit	
Grey	Pr ee ng pla	Bio Bei	gas nefi		n I Alla CHP Bollige	Output	

Waste to energy process

ds in put	Solids	, Food &	_			Liquid	
od	MSW Wood	Food &	_				
}		fruit waste	0	anure	м	Water/ liquid	
	0.0	-0		₽.	Ŷ	₽.	
	Incineration	CO.T	ere	1A			
	C J		L	WL		J.	
gae	Sin or wood gas	Biogas		gestate	Di		
' .	Heat & steam via blogas boller				- C		
HP	Electricity, heat and cooling via CHP				Liquid organic fertilizer		
	Bio-fuel via scrubber			Pellets			
	sin or wood a blogas boller d cooling via C a scrubber	Biogas eat & steam vi tricity, heat an Bio-fuel vin	nic ets	d organ rtilizer Pello		Grey water	

Energy balance

Can only convert not create energy

Waste to energy potential in South Africa

Wastewater		MWth	MWe
Domestic black water	Municipal WWTP	842	253
Animal husbandry	Feedlots (solids & liquids)	245	65
	Rural cattle (kraaled at night - solids only)	3445	1035
	Dairies (solid & liquid)	121	36
	Piggeries (solid & liquid)	715	215
	Poultry (solid only)	2976	894
	Red meat & Poultry Abattoirs (liquid waste only)	55	17
Fruit processing	Waste water only, no pulp or pomace	68	20
Winery		3	1
Distillery	Grain, grape & sugarcane (molasses)	70	21
Brewery		17	5
Pulp and paper		100	30
Petrochemical waste		48	14
	•	8705	2606

CHP Biogas usage vs Feedstock

	CHPs		Biogas input	Typical minimum daily tonnage required to achieve gas production Note: only indication, material must be available 365day/ year			
	Electrical power output (KW)	Thermal power 80C output (KW)	required	Dairy cow slurry	Fruit/ food waste	Napier grass (green)	
	20	26	9,6	7	2	2	
	30	39	14,4	10	3	3,5	
	45	58,5	21,6	15,5	5	4,5	
	50	65	24,0	17	6	5	
	64	83,2	30,7	21,5	7,5	6	
	75	97,5	36,0	20	8,5	7	
<	135	175,5	64,8	48	16	13,5	>
	220	286	105,6	75	25	20,5	
	360	468	172,8	122	40,5	33,5	
	530	689	254,4	180	60	49,5	

Blogas process/ cycle from source to use

plan

Biomass – Municipal Solid Waste Seperation

Processing plant

Waste to energy process

Biogas process / Cycle from source to use

Biogas Plant Standard Footprint

Benefit of biogas can

Reduce GHG Produce renewable energy Reduce use of fossil fuels Reduce waste in environment Produce organic fertilizer - improve soil quality Reduce water usage Create sustainable jobs Stimulate farming - energy crop production

Biogas to Biofuel for transport

Biogas plant in South Africa

Reference sites South Africa ibert plant overview

Construction

Reference sites South Africa Plant #1 Meat to Market Jan Kempdorp - 2012

600m³ AD, 135 kW CHP, 15 t/day slaughter waste

Reference sites South Africa Plant #2 Hessequa Abattoir – Riverdale - 2014

400m³ AD, 50 kW CHP, 10 t/day slaughter waste

Reference sites South Africa Plant #3 No2 Piggeries – Queenstown - 2015

600m³ AD, 190 kW CHP, 40 t/day pig manure

Reference sites South Africa Plant #4&5 Cavalier Abattoir – Cullinan - 2015/17

3 x 500m3 AD & storage, 340 kW CHP, 45 t/day, abattoir waste

Reference sites South Africa Plant #6 Zandam Cheese & Piggery (W/Cape) 2016

500m³ AD, 75 kW CHP, 25 t/day pig manure

Reference sites South Africa Plant #7 Thorny hill KZN – energy crop - 2016

200m3 AD, 16 kW 2,5t/d Napier grass

Conclusion

Biomass is "Renewable resource" IBERT have the Technology available in South Africa to make this a **reality**

