

Repetition

Werner Weiss

AEE - Institute for Sustainable Technologies A-8200 Gleisdorf, Feldgasse 2 AUSTRIA

financed by

Austrian

Achievements - 2009

Total Capacity in Operation [GW_{el}], [GW_{th}] and Produced Energy [TWh_{el}], [TWh_{th}],

Distribution of Collectors

Solar Heat Worldwide - 2008

Installations by Economic Region 2008 Flat-plate and Evacuated Collectors

financed by

Austrian

Annually installed capacity of flat-plateustrian and evacuated tube collectors

Installed capacity [kW_{th}/a/1,000 inh.]

Distribution of different solar thermal systems by economic region

Distribution by Application

Austrian

Development Cooperation

World's Top 8 Countries / Related to newly installed capacity in 2008

Source: Weiss, W., Mauthner, F.: Solar Heat Worldwide, IEA SHC 2010

Cooling Systems 2009

Total Amount of Installed Solar Cooling Systems in Europe and the World

Source:www.greenchiller.eu.

financed by

Austrian

Solar Water Heating Systems

financed by

Austrian

Solar Water Heating Systems

financed by

Austrian

Solar Water Heating Systems

financed by

Austrian

Development Cooperation

Three different types of evacuated tube collectors:

all-glass U-tube heat-pipe

Pumped SWH Systems

financed by

Austrian

Austrian

Combined SWH and Cooling

Austrian
Development Cooperation

Solar Air Conditioning and Cooling

Austrian

Development Cooperation

Source: Fraunhofer ISE, Solarnext

Austrian

Solar Cooling System for the German BMVBW Cooperation

Source: Jan Albers, IMBE, TU Berlin

Austrian

Development Cooperation

www.aee-intec.at AEE - Institute for Sustainable Technologies

Solar District Heating

Austrian

Development Cooperation

Tyras Dairy, Trikala, Greece

Austrian
Development Cooperation

Textile Industry Hangzhou China 13000m² (9 MW_{th})

financed by

SEA WATER DESALINATION

financed by

Austrian

Development Cooperation

www.aee-intec.at AEE - Institute for Sustainable Technologies

SOLAR RADIATION - 1

financed by

Austrian

Development Cooperation

SOLAR CONSTANT 1360 W/m²

GLOBAL IRRADIATION 800 - 1000 W/m²

SOLAR RADIATION - 2

	Clear, blue sky	Scattered clouds	Overcast sky		
	0		***		
Solar irradiance [W/m²]	600 - 1000	200 - 400	50 - 150		
Diffuse fraction [%]	10 - 20	20 - 80	80 - 100		

Global irradiance and diffuse fraction, depending on the cloud conditions

SOLAR RADIATION - 7

	Jan	Feb	Mar	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Year	Lat
Vienna, Austria	25.2	43	81.4	118.9	149.8	160.7	164.9	139.7	100.6	59.8	26.3	19.9	1090	48.2 N
Kampala, UG	174	164	170	153	151	142	141	151	155	163	154	164	1882	00.2 N
Johannesburg	215	185	183	144	135	119	132	158	189	200	197	218	2076	26.1 S

Average monthly and yearly values of global solar radiation on a horizontal surface in kWh/m²

Depending on the geographic location the yearly global insolation on a horizontal surface may vary between 1000 and 2200 kWh/m²

ANGLE OF TILT

Latitude [degree]		Best collector tilt in:						
	June	Orientation	Sept./March	Orientation	December	Orientation		
50 N	26.5	S	50	S	73.5	S		
40 N	16.5	S	40	S	63.5	S		
30 N	6.5	S	30	S	53.5	S		
20 N	3.5	N	20	S	43.5	S		
15 N	8.5	N	15	S	38.5	S		
10 N	13.5	N	10	S	33.5	S		
Equator = 0	23.5	N	0	-	23.5	S		
10 S	33.5	N	10	N	13.5	S		
15 S	38.5	N	15	N	8.5	S		
20 S	43.5	N	20	N	3.5	S		
30 S	53.5	N	30	N	6.5	N		
40 S	63.5	N	40	N	16.5	N		
50 S	73.5	N	50	N	26.5	N		

Maputo: Latitude -25.9

Cape Town: Latitude - 34

As a general rule, the optimum angle of tilt is equal to the degree of latitude of the site

TYPES OF COLLECTORS

	principle	ηο []	U [wm² K]	collector working temp.	appropriate application areas
simple absorber		0.90	20	15 – 30 °C	swimming pool
simple flat-plate collector with glass cover (FP)		0.80	4	30 – 80 °C	hot water
FP with selective surface (SS)		0.80	3	40 – 90 °C	hot water space heating
FP with double anti- reflective coated glazing and gas filling	-0-0-0-0-	0.80	2.5	50 – 100 °C	hot water space heating cooling
evacuated tube collector with SS (ETC)	$\Theta\Theta\Theta\Theta$	0.65	2	90 – 130 °C	space heating cooling process heat
ETC with compound parabolic concentrator (CPC)	$\bigcirc \bigcirc \bigcirc$	0.60	1	110 – 200 °C	space heating cooling process heat

FLAT-PLATE COLLECTOR

Austrian

Development Cooperation

Source: Consolar

Evacuated Tube Collectors – Heat Pipe — Development Cooperation

Austrian

Absorber Material

Austrian

Development Cooperation

Aluminum or Copper?

Source: Sonne, Wind und Wärme, 2009

Selective coating:

Partially selective coating:

Non selective coating:

$$0.2 \le \varepsilon < 0.5, \alpha > 0.9$$

$$0.5 \le \varepsilon < 1.0, \alpha > 0.9$$

Plain copper

black paint

galvanic coating

physical vapour deposition or sputtering

COLLECTOR MATERIALS

financed by

Austrian

ABSORBER MATERIALS THERMAL CONDUCTIVITY

absorber material	thermal conductivity [W/mK]				
steel	50				
aluminium	210				
copper	380				

TRANSPARENT COVER MATERIALS

Austrian

Development Cooperation

cover	thickness [mm]	weight [kg/m²]	solar transmittance		
	[,,,,,]	[K9/III]			
Standard glass *)	4	10	0.84		
Standard glass, tempered	4	10	0.84		
Iron free glass, tempered	4	10	0.91		
Antireflective coated glass	4	10	0.95		
PMMA, ducted plate	16	5.0	0.77		
PMMA, double ducted plate	16	5.6	0.72		

*) danger of breaking determined by high collector temperatures

TRANSPARENT COVER MATERIALS

Austrian

Physical Processes inside a Flat-Plate Collector

Losses of a basic Flat-plate Collector

Source: Wagner & Co.

Characteristic Values of Flat-plate and Evacuated Tube Collectors

Austrian

Development Cooperation

$$\dot{Q}_{coll} = F_R(\tau\alpha) G - F_R U_L \Delta T$$

Q_{coll} is the energy collected per unit collector area per unit time **FR** is the collector's heat removal factor

T is the transmittance of the cover

c is the shortwave absorptivity of the absorber

G is the global incident solar radiation on the collector

U_L is the overall heat loss coefficient of the collector

 ΔT is the temperature differential between the heat transfer fluid entering the collector and the ambient temperature outside the collector.

Collector Efficiency Curve

Collector Efficiency

$$\eta = \frac{\textit{useful energy}}{\textit{solar energy}}$$

$$\eta = \eta_0 - a_1 \cdot \frac{(t_m - t_a)}{G} - a_2 \cdot \frac{(t_m - t_a)^2}{G}$$

Collector Efficiency

financed by Austrian Development Cooperation

η_{o}	maximum efficiency (= efficiency at $t_m = t_a$)	
a_1	linear heat loss coefficient	$\frac{W}{m^2 \cdot K}$
a_2	s. T-Sol Collector data quadratic heat loss coefficient	$\frac{W}{m^2 \cdot K^2}$
$t_{\mathbf{m}}$	average temperature of the heat transfer fluid	°C
ta	ambient temperature	°C
G	incident radiant energy (global radiation)	$\frac{W}{m^2}$

Collector efficiency curve

Efficiency of different collector types (calc) Development Cooperation

Capacity of a Water Storage (calc)

$$Q_s = (m C_p) \Delta T$$

Q_s total heat capacity of the storage tank [kWh] m volume of the storage tank [m³]

C_p heat capacity of water [1.16 kWh/m³K]

 ΔT temperature difference - hot water temperature and cold water temperature [K]

Austrian

Development Cooperation

THERMOSYPHON SYSTEMS

Hot water storage for a thermosyphon system

financed by

Austrian

Development Cooperation

13. Heat Exchanger Safety Valve

Domestic Hot Water Tank

financed by

Austrian

Development Cooperation

Hot water tanks with stratification devices

Sources from left to right: Solarklar, TiSun and Solvis