Discussion Forum: Electric Vehicles vs Hybrid Vehicles, 20 June 2008

Hybrid Electrical Vehicles

Prof M J Kamper and Dr R Wang

Electrical Machines Laboratory University of Stellenbosch Stellenbosch, South Africa

Department Electrical & Electronic Engineering

University of Stellenbosch

- History
- Vehicle Powertrains
- HEV Configurations
- Degree of Hybridization
- Plug-in HEVs
- Electrical Motor Drives
- HEV Example at SU
- Conclusions

HEV

□ First EV (1881)

HEV won hill climbing race (1902)

□ First 4WD EV (1898)

□ First mass produced HEV (1997)

Series Hybrid

- ICE-assisted EV
- Simple drivetrain (no clutches)
- Flexible location of ICE
- 3 Propulsion devices
- Heavy-duty electrical machine
- Large battery pack

Parallel Hybrid

- ICE or Motor or both in Parallel
- Electrical-assisted ICE vehicle
- **2** Propulsion devices
- Sizing of devices depends
- Simple power converter
- Generally two clutches
- Small-medium battery pack

Series-Parallel Hybrid

- More complex and costly
- **3** Propulsion devices
- Three propulsion power
- Two clutches
- Smaller battery pack

NB: Power Flow Control

- "micro" HEVs: stop/start and variable charging capacity;
- "mild" HEVs: regenerative braking, engine start/stop, electric assisted driving;
- "full" HEVs: full electric launch/drive capability, a higher percentage of system power from the electric motor part of the propulsion system;
- "series" or "range extender" HEVs: a full-sized electric motor drive in addition to including regenerative braking and significant "All Electrical Range" (AER).

A Full Hybrid: 57 kW ICE, 50 kW electric motor, 1.5 kWh battery (2004)

57 kW gasoline engine, 50 kW electric motor, 9.0 kWh battery (48km)

Matching motorist's driving habit

Reduction of petrol usage and thus related emission

Fuel Consumption Comparison

Integrated Design

Motor Design Requirements:

- Light weight / High power density
- □ High efficiency

Power Converter Design Considerations:

- Temperature sensitivity of bus capacitors;
- Environmental impact;
- Drive efficiency;
- □ EMC issues;
- Last but not the least COST.

Parallel HEV developed by EMLab (1998)

Configuration

Power Electronic Converter and Batteries

60 kW Inverter with 22 x 12 V batteries (280V DC voltage bus, 420 kg, 90 km range)

Parallel HEV Configuration

30 kW peak, Reluctance Synchronous Machine and ICE

- HEV is a near-term technology for improving fuel economy and emission.
- The mainstream powertrain topologies are power-split and parallel.
- □ There are different degrees of hybridization.
- PHEV is potentially a better system than normal HEV, but there are also challenges.
- Fuel prices vs battery cost will determine HEV configuration and user term.

Thank You

Prof M J Kamper and Dr R Wang

Electrical Machines Laboratory Department of Electrical and Electronic Engineering University of Stellenbosch Stellenbosch, South Africa

