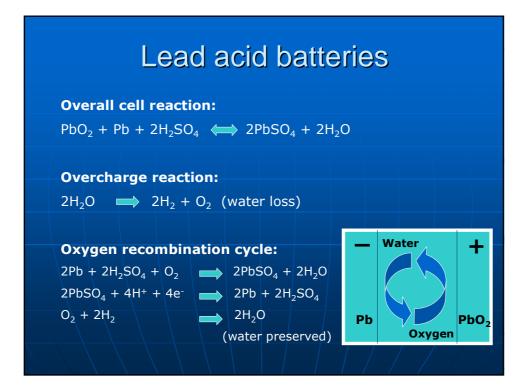
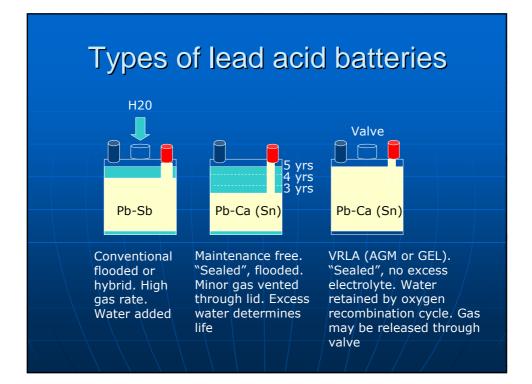
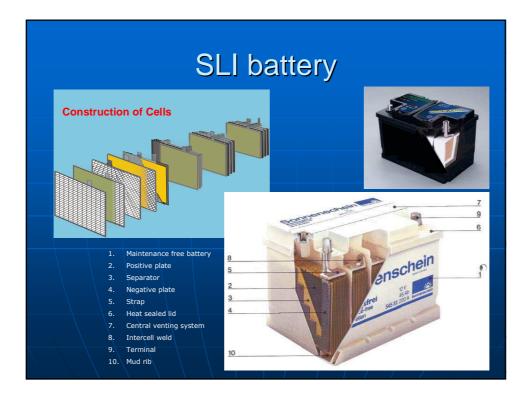
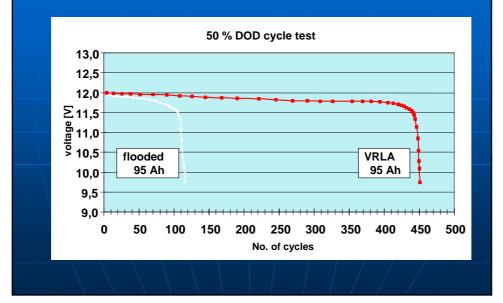

Battery selection criteria


- Energy density (Wh/kg, Wh/l)
- Power density (W/kg)
- Voltage
- Power requirements and duration
- Cycle life
- Temperature (and management)
- Self discharge
- MaintenanceSafety
- Cost
- Physical dimensions
- Charger characteristics and requirements
- Environmental (& recycling)
- Other (reliability, ease of manufacture, warranty)


Battery selection criteria


	C	Cell reactions &	spe	cific energies	
Batte	ery	Ce	ll react	ion	Specific energy
+ve	-ve	Charge	Volts	Discharge	(Wh/kg)
PbO ₂	Pb	PbO ₂ +2H ₂ SO ₄ +Pb	2.0	2PbSO ₄ +2H ₂ O	171 (35)
NiOOH	Cd	2NiOOH+2H ₂ O+Cd	1.2	2Ni(OH) ₂ +Cd(OH) ₂	217 (50)
NiOOH	MH	2NiOOH+MH	1.2	2Ni(OH) ₂ +M	+280 (70)
S	Na	2Na+3S	2.0	Na ₂ S ₃	760 (120)
NiCl ₂	Na	2Na+NiCl ₂	2.5	2NaCl+Ni	790 (120)
LiCoO ₂	LiC ₆	LiC ₆ +CoO ₂	3.6	C ₆ +LiCoO ₂	766 (140)
LiNiO ₂	LiC ₆	LiC ₆ +Ni _{0.8} Co _{0.2} O2	3.7	C ₆ +LiNi _{0.8} Co _{0.2} O2	766 (180)
Petrol				CO ₂	12333



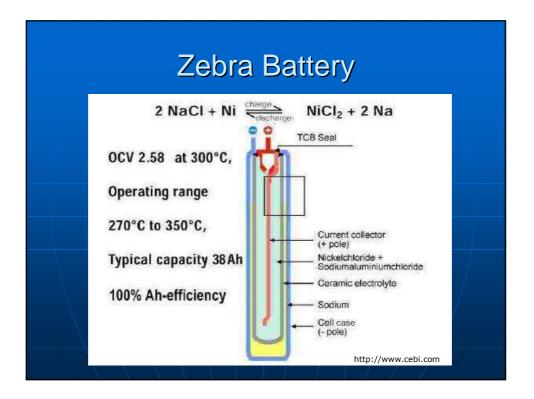
Starter motor	• Wipers	Electric Windows
	Screen Washer	Electric Sun Roof
Head Lights	• Fuel Pump	
Side Lights	Heater/Demister/Blower	 VHF Radio Telephone Air Conditioning
Fog Lights	• Rear Window Heater	 Air Conditioning Electric Mirrors
Rear Lights	Rear Window Wash/Wipe	 Electric Mirrors Electric Seat Adjustment
Reverse Lights	Cigarette Lighter	Electric Seat Heater
Brake Lights	Radio/Cassette Player	Air Damper Compressor
Hazard Lights	Electric Aerial.	Unit
Dashboard Lights	CB Radio	• Water Injection System
Interior Lights	Burglar Alarm	 Electronic Fuel Injection
Direction Indicators	Seat Belt Warning Light	Electronic Instrument
• Horns	Central Locking System	Displays
Electronic Voice	Catalyst Heater	Headlamp Wash/Wipe

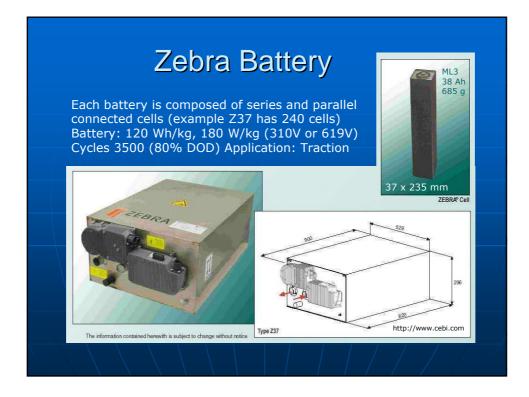
Advantages of VRLA

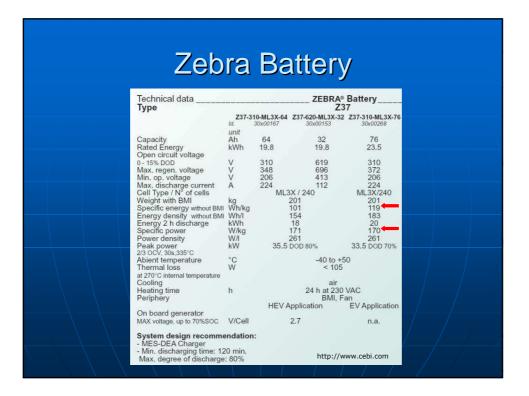
- Extremely low water loss
- Increased cycle life & energy throughput
- Improved cold cranking
- Increased capacity for same size
- Improved shelf life
- Leakproof battery
- No acid stratification

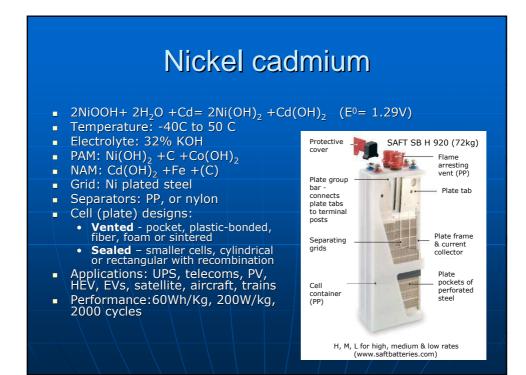
Flooded lead acid batteries

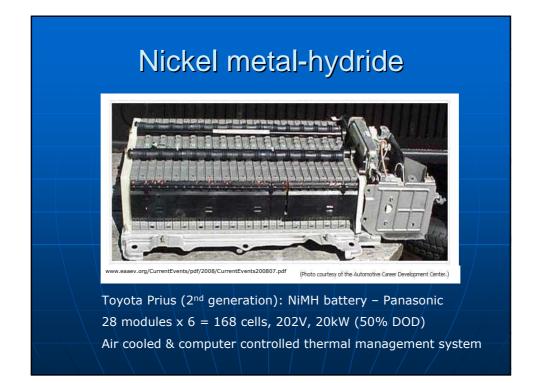
Plante battery Thick electrodes 20 year life Applications: Power stations, telecoms etc.

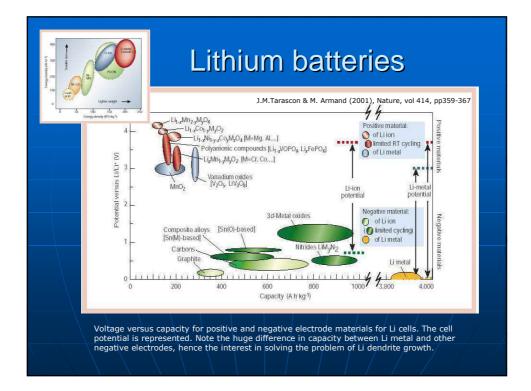

Flooded tubular plate battery (OPzS) Applications: Traction, solar and load leveling.

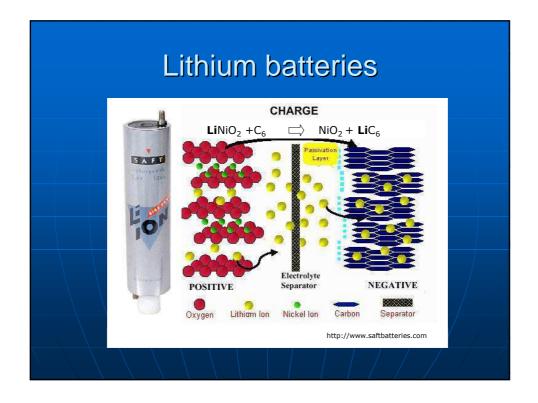

Flooded flat plate battery (OGi) Applications: Telecoms and UPS.

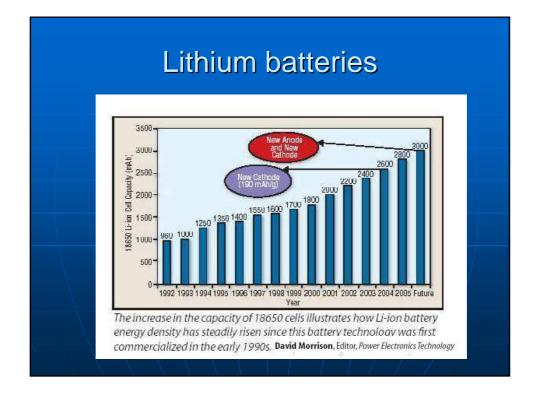


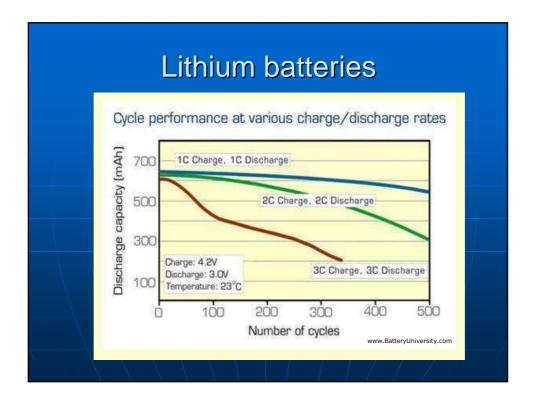




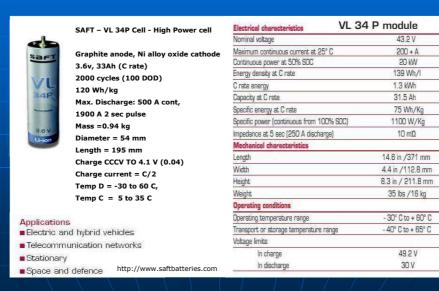


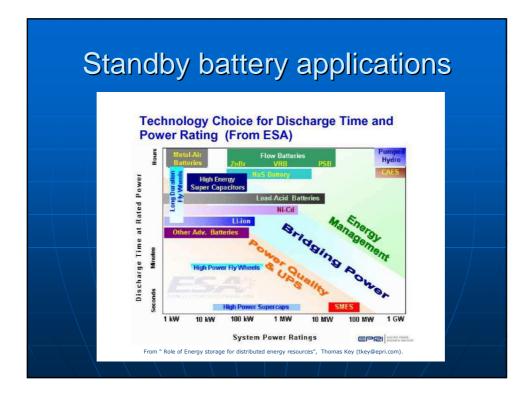


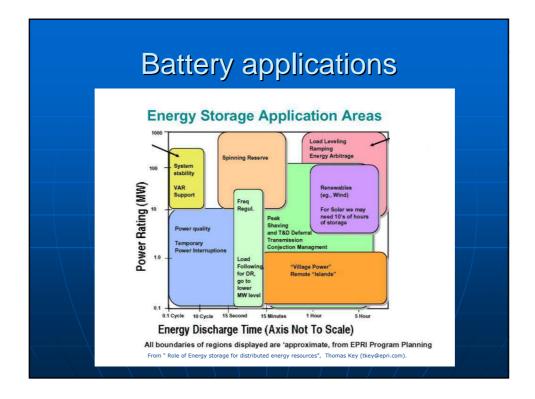

Nickel metal-hydride
 NiOOH+ MH = 2Ni(OH)₂ +M (E⁰=1.35V) Positive electrode like NiCd (plus ZnO & La₂O₃) Cell design same as sealed NiCd foam plates Separator: Non woven polypropylene Negative electrode: MH slurry on perforated foil (Ni, Cu or steel) Negative electrode - two types of metal hydride used: AB₅ (LaNi₅ A=Mischmetal,La,Ce,Ti and B=Ni,Co,Mn,Al). Most used'(300 Ah/kg) AB₂ (TiNi₂, A=Ti,V and B=Ni,Zr (Cr,Co,Fe,Mn) Uséd by Ovonic (400Ah/kg) Applications: Smaller cells than NiCd. Large batteries: EV's (e.g. Toyota Prius)
 Performance:60-70Wh/Kg, 250W/kg, 2000 cycles (80% DOD)



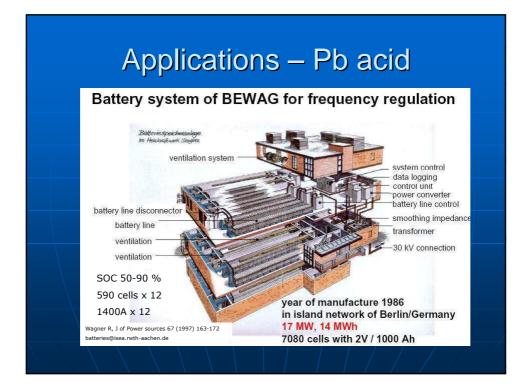
	Lithium batteries									
		obalt Dxide hium Ions			Manganese ≢Oxide Lithium Ions	LiFePO4				
Chemistry	Nominal Voltage (V)	Charge limit (V)	Charge & discharge C-rates	Energy density (Wh/kg)	High T stability & SoC	Active material cost (\$/kWh)	Application / comment			
Cobalt LiCoO ₂	3.60	4.20	1C	110-190	Fair - good	57-75	Since 1990's (Sony Laptops.			
	3.80	4.20	10C cont. 40C pulse	110-190	Very good	25	Low energy density high power Power tools			
Mn spinel LiMnO ₂ "LMS"			1							
LiMnO ₂	3.70	4.10	5C cont 30C pulse	95-130	good	30-50	Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O Power tools			
LiMnO ₂ "LMS" Li (Ni,Co,Mn)	3.70 3.60	4.10		95-130 110-190	good Fair- good	30-50 50				






SAFT SAFT	High energy l VLE Module	ithium-ion n	nodu
VL 45 E Cell		VLE 22-42	VLE 1
3.6v, 45Ah (C/3)	Electrical characteristics		
149 Wh/kg	Nominal voltage (V)	21.6	10
664 W/kg	Minimum capacity at c/3 after		
C-PERS-	charge to 4.0 V/cell (Ah)	42	8
1.07 kg	Specific energy (Wh/kg)	110	11
	Energy density (Wh/dm ^a)	158	15
	Specific power		
3.67	(30s peak/50% DOD) (W/kg)	533	53
Li-ton	Power density		
	Module (30s peak/50% D0D) (W/dm²)	753	75
Features	Mechanical characteristics		
 Very high specific energy Light and compact 	Häght (mm)	242	24
Maintenance free	Width (mm)	190	1
Excellent cycle and calendar life), Lenght (mm)	123	12
Integrated liquid cooling	Typical weight (kg)	8	8
Easy integration into customized	Volume (dm*)	5.66	5.
battery systems	Voltage limits		
	Charge (V)	4.0 (4.1 for	r peak)/c
Applications	Discharge (V)	2.7 (2.3 for	r peak]/c
Electric and hybrid vehicles	Current limits		
Telecommunication networks	Max continuous current (A)	100	20
Stationary		250	50

l ithium	batteries
	Dallenes



	licatic)ns	_	eac	a a cir
			-		
Batte	ery systems	installe	d betw	een 1986	& 1997
Technology		Power	Energy	Year	Purpose
57		MW	MWh	Operation	-
Lead Acid	Berlin(D)	17	14	1986 - 1995	Power Quality
		1.1971	200		Spining reserve
Lead Acid	Tatsumi(J)	1	4	1986	Multi-purpose
	0.000000000000000				Demonstrator
Lead Acid	Chino(USA)	10	40	1988 - 1997	Multi-purpose
					Demonstrator
Lead Acid	South Africa	4	7	1989	Peak Shaving
					UPS
Zn-Br	Kyushu(J)	1	4	1991	Multi-purpose
11-90111-0.001					Demonstrator
Lead Acid	Puerto Rico	20	14	1994	Power Quality
					Spining reserve
Lead Acid	Vernon(USA)	3.5	3.5	1996	Peak Shaving
					UPS
Lead Acid	Metlakatla	1	1.3	1997	Grid stabilization
					Power Quality

Applications - NaS & NiCad

Technology	Location	Power	Energy	Year	Purpose	
and a second sec	STEL WAR AND T	MW	MWh	Operation		
NaS	Tsunashima	6	48	1998	Load Levelling	
	Substation				Spinning reserve	
NaS	Ohito	6	48	1999	Load Levelling	
	Substation					
NaS	Saitama	2	12	1999	Load Levelling	
NaS	Odaka	1	8	2000	Load Levelling	
NaS	Tsunashima	2	14.4	2000	Load Levelling	
NaS	Shinagawa	2	14.4	2001	Load Levelling	
NaS	Kanagwana	1	7.2	2001	Peak Shaving	
		-		_	UPS	
NaS	Ebina	1	7.2	2001	Peak Shaving	
					UPS	
NaS	Chichibu	1	7.2	2002	load levelling	
\backslash	Semicond pl				UPS	
Ni-Cad	Fairbanks	40	10	2003	load levelling	
	Alaska(USA)				UPS operate	

Applications - NiCd

Golden Valley Electric's Battery Energy Storage System (Alaska)

13760 NiCd cells (SAFT SBH 920 cells) 35 Mio \$ commissioning: Aug. 2003 batteries@isea.rwth-aachen.de

Conclusions There are pros and cons of every battery system which should be weighed up against the intended application Lead acid batteries are good for float applications, have a low initial capital cost, proven technology with high recycling efficiency and future potential for improvements in life Nickel cadmium and nickel metal hydride batteries have good cycling and power capabilities at increased cost. They have a memory effect and high self discharge. Metal hydride batteries have higher energy density with no toxic metals but poor charge acceptance at high temperatures and require thermal management Sodium metal chloride batteries have high energy density & are promising for traction and stationary applications. Disadvantages are the high temperatures, limited manufacturing facilities & lack of high power cell designs. Li-ion batteries are starting to enter the telecoms markets in larger cell sizes where weight & space is a criteria but at increased cost. Each cell requires electronics to control C/D voltage. Safety will remain a key issue