
A finite element based optimisation tool for electrical machines

Stiaan Gerber
University of Stellenbosch

Centre for Renewable and Sustainable Energy Studies

Abstract

This paper discusses the development of a finite element simulation package for electrical ma-
chines. This software is being used at the Electrical Machines Lab in the Department of Elec-
trical and Electronic Engineering at the University of Stellenbosch where research in electrical
machines for applications such as electric vehicles, wind generators, wave energy converters
and Stirling engines is conducted. A couple of the main components of this software package
are described and it's capabilities are discussed.

The tool is designed to couple with a variety of optimisation tools which enables the design of
electrical machines using finite element based numerical optimisation. Typically, these opti-
misation processes are computationally expensive. For this reason, the tool was designed to
make use of parallel processors to speed the optimisation process.

The competency of the finite element package is illustrated by means of two case studies.
These case studies show that the developed finite element package is capable of producing
results that match those obtained using commercial finite element packages. One of these
machines, a linear generator for a Stirling engine application, is used to illustrate how the tool
can be used to optimise a machine.

Recommendations regarding possible future development of the package are made.

Keywords: electrical machines, finite element analysis, design optimisation

1 Introduction

1.1 Modern electrical machine design challenges

One of the greatest challenges of our time is to supply the ever growing population of the
earth with enough energy. In modern times, the dominant form of energy used by humans has
become electrical energy because it can be transported relatively easily and because it can
readily be converted into other forms of energy that is useful to us such as heat or rotational
energy. However, we as the human race are also growing ever more conscious of the fact that
our way of life is having a negative impact on other forms of life and this has motivated us to
consider, among many other things, the ways in which we generate electricity.

Electric generators are one of the critical components in the electricity generation process and
as such the quality and cost of these machines have a significant impact on the performance
and cost of our electrical systems. Today, the main challenges in designing electric generators
are:

• designing generators suited to alternative forms of mechanical input power such as wind
power, Stirling engines or wave energy converters

1



• pushing generators to be as efficient as possible

• designing generators that are inexpensive, thus lowering the cost and the impact associ-
ated with electricity generation or making renewable energy generation financially more
viable

Electric vehicles, on the other hand, hold the promise of cleaner, more efficient transporta-
tion and although electrical machines are not necessarily the most prominent impediment to
the widespread use of these vehicles, they remain a critical component with strict design con-
straints.

In order to meet the requirements on all types of electrical machines, the ability to accurately
model their performance is of vital importance. The most popular technique currently available
for the modelling of electrical machines is finite element analysis. This method allows many
machine parameters, such as torque, power and efficiency to be calculated accurately and
allows designs to be evaluated for many different criteria.

1.2 The finite element method

Here follows a discussion on the finite element method, as is applicable to the modelling of
electrical machines considered in this paper.

In order to accurately calculate machine parameters, the magnetic field inside a machine must
be solved for different positions of the moving component in the machine. The equations that
govern this field are Maxwell's equations. In the magnetostatic case which is considered in this
work, the problem of solving the magnetic field can be reduced to solving

∇× (∇× A) = µJ (1)

with A the magnetic vector potential, J the current density and µ the permeability. For the two-
dimensional cases considered in this work, the unknown vector function A can be reduced to
a single component dependent on two spatial variables, e.g. A(x, y, z) = Az(x, y).

Using the finite element method the problem domain is broken up into small triangular elements
on which the unknown function Az(x, y) is approximated by

Az(x, y) = α1 + α2x + α3y = N1u1 + N2u2 + N3u3 (2)

where the Ni are shape functions and the ui are the (unknown) nodal values of the vector
potential at the vertices of the triangle.

Eventually, the problem can be reduced to solving a system of linear equations for each trian-
gular element,

Kleule = fle (3)
where the superscripts designate the local element system. These can be merged into one
global system of linear equations from which the unknown nodal values can be solved.

Ku = f (4)

To assemble the global stiffness matrix, K, refer to Fig. 1. To calculate a term, Kij of the global
stiffness matrix, terms from different local stiffness matrices may have to be summed. For
example, K25 and f2 is calculated as

K25 = K2
13 + K1

23 f2 = f1
2 + f2

1 (5)

2



1

2 3

4

1

2

3

4

5

1

1
1

1

2
2

2
2

3

3

3

3

Figure 1: A portion of a finite element mesh. The large bold numbers indicate global node
numbers, the small numbers indicate local node numbers and the circled numbers indicate
element numbers

where the superscripts indicate local element systems.

1.3 Overview of this work

In the past, a custom finite element program has been used with good success by members
of the Electrical Machines Group at the University of Stellenbosch. Because of the importance
of finite element analysis in electrical machine design and the versatility offered by having the
source code of a finite element program available, this programwas deemed a significant asset.
Unfortunately, there were also a couple of negative aspects to the implementation that required
some attention. It was considered a worthwhile undertaking to sort out these issues and make
some improvements that would allow the continued use of this program.

The goal of this work was to transform the original finite element program into a more pow-
erful and usable tool, making it more competitive with commercially available finite element
simulation packages for certain classes of problems. The classes of problems targeted in this
work were two-dimensional magnetostatic problems with non-linear magnetic materials. These
classes, illustrated in figures 2 to 4, can be defined as follows:

1. 2D rotating machines

2. 2D flat linear machines

3. 2D axisymmetric or tubular linear machines

The first two classes require the solution of (1) in Cartesian coordinates,

∂2Az

∂x2
+

∂2Az

∂y2
= −µJz (6)

and the third class requires the solution of (1) in cylindrical coordinates

∂2Aϕ

∂z2
+

∂2Aϕ

∂r2
+

1
r

∂Aϕ

∂r
− 1

r2
Aϕ = −µJϕ (7)

where µ is a function of the magnetic field strength, defined by a single valued B-H curve, and
the current densities Jz and Jϕ are prescribed.

3



Figure 2: Problem class I: 2D rotating machines

Figure 3: Problem class II: 2D flat linear machines

Figure 4: Problem class III: 2D axisymmetric linear machines

4



Figure 5: The inner structure of the core. Dashed arrowheads indicate dependencies, solid
arrowheads indicate implementation.

The program, in it's original form as received by the author, was capable of solving class I and
II problems with the limitation that only a single air-gap could be modelled. The extension of
the program for class III problems and multiple air-gaps is discussed in section 2.

Another requirement was that the developed finite element program should be easy to use
within different optimisation environments. If a robust, tried and tested, environment for the
optimisation of generators could be created, it would be a very powerful tool.

2 Components

In this section themain software components of the simulation package will be discussed briefly.
Improvements and extensions of the original program will be highlighted.

2.1 Overview

For many reasons, it was necessary to completely restructure the original program to improve
it's performance and usability. Thus, the first part of this work was mainly concerned with the
form of the program rather than the mathematics behind it. Originally, two separate programs
existed for class I and II problems. These were merged and many other improvements were
made. The resulting restructured package has been dubbed SEMFEM - Stellenbosch Electrical
Machines Finite Element Method.

The main components of the restructured package and the interfaces provided to a user is
illustrated in figure 5. The configuration module stores data on the required problem class, the
amount of air-gaps and other configuration parameters. The input module stores data such as
the amount of time-steps required, position values of the moving component, winding currents
at each time-step, etc. The libmesh component provides an interface that allows the user to
easily construct a mesh (see section 2.2). The preprocessor is responsible for calculating the
stiffness matrices of the air-gap elements (see section 2.3), setting boundary conditions and
setting up other data structures needed by the solver. The solver solves the system equation

5



Initialize core
using configuration interface

Define machine
dimensions

Draw machine
using mesh interface

Setup time-stepped simulation
using input interface

Run simulation using
configuration interfacePost-process data

Figure 6: Flow diagram of a typical simulation

(4), taking into account the non-linearity of µ, and calculates torque or force and flux linkages.
With this data available the user can obtain all the required characteristics of the machine.

A user would typically use the interfaces as illustrated by the shaded blocks in figure 6.

2.2 Mesh generation

From the user's perspective, the most work in preparing a simulation often lies in constructing
the finite element mesh. Thus, it is vitally important that the process of constructing a mesh
is powerful, yet easy to use. The original program did not meet this requirement. Mesh con-
struction was a tedious process and varying the coarseness of a mesh was almost as much
work as constructing a new mesh from scratch. This is highly undesirable because the mesh
coarseness has a great effect on the simulation accuracy, but also on computational time. A
user typically wants to experiment with the coarseness of the mesh in various parts of the model
in order to obtain an acceptable compromise between accuracy and speed and this requires a
simple, powerful method of varying the coarseness.

Figure 7: A finite element mesh generated with SEMFEM using Triangle

6



For these reasons, the original method of generating a mesh was discarded and a specialised
open source mesh generator, Triangle (Shewchuk, 1996), was incorporated into the program.
This is accomplished by the libmesh component shown in gure 5. This library, like Triangle
itself, is implemented in C. It is approximately 900 lines long and contains all the functionality
to convert data structures from the representation used by Triangle to the representation used
by SEMFEM as well as the subroutines that users of the program need to construct a mesh.

The new method of mesh generation greatly simplifies the process from the user's perspective
and is capable of varying the mesh coarseness in different parts of the model by simply setting
a maximum element area for specific regions. An example of a mesh generated using this
method is shown in figure 7.

2.3 Air-gap elements

The single most important distinction between the presented program and other packages used
to simulate electrical machines in the present day is the way this program handles relative
movement between different sections of the finite-element mesh. The method used in this
program was first proposed by Abdel-Razek et al. (1982). It is unique because the air-gap
is not meshed, but the field in a special air-gap element is calculated analytically. Thus, the
accuracy of the field in the air-gap, a crucial part of the model, is only subject to the accuracy
of the surrounding elements. No additional discretisation error is introduced in the air-gap.
Another advantage of using this method is that the forces acting on the moving component can
be calculated simply and accurately using Maxwell's tensor, as is described in (Abdel-Razek
et al., 1981). A linear version of the air-gap element method using the Cartesian coordinate
system was derived by Wang (2003). This air-gap element featured in the linear version of the
original program.

Originally, the air-gap element method was computationally very expensive, but Flack and
Volschenk greatly reduced the cost of the method using the technique discussed in (Flack
and Volschenk, 1994). This technique was implemented in the original versions of the program
and contributed to it's good performance.

Air-gap elements also produce a local stiffness matrix of the form of (3), but where the local
stiffness matrices of ordinary first order triangular elements are 3×3 matrices, that of an air-gap
element is much larger because it is connected to many more than 3 nodes.

A big limitation of the original version of the program was that it was only capable of analysing
models with a single air-gap using the air-gap element method. This prohibited the use of the
program in the analysis of many topologies. This limitation was removed during the course of
this work.

The greatest challenge in adding multiple air-gap functionality to the program lay in understand-
ing how air-gap elements are coupled to the rest of the finite element mesh and identifying the
pieces of code that implement this coupling. Mathematically, the coupling of air-gap elements
to the traditional mesh can be expressed as

Kij =
∑

Ke
mn +

NG∑
k=1

∑
Kεk

mn (8)

where the first term represents contributions from the traditional mesh and the second term
represents the contributions from a total of NG air-gaps. Once this was mastered, modifying

7



the code to allow multiple air-gaps was a relatively simple matter. This was done in the fol-
lowing manner. Firstly, additional variables were declared to provide storage for the additional
air-gap element data. Secondly, the preprocessor was modified to setup more than one air-
gap correctly. Thirdly, the solver was modified to take the contribution to the stiffness matrix
coefficients from all air-gap elements into account. Lastly, the torque or force calculations were
modified to take the contribution from both neighbouring air-gap elements into account.

2.4 Nonlinear solver

Referring to (4), note that the coefficients of the matrix K are functions of µ and µ is a function
of the solution variables u. This implies that an iterative process must be used to converge
to the correct solution of (4). The Newton-Raphson method is used in the presented program
because of it's fast rate of convergence. Using this method, the solution vector is updated at
each iteration according to the following equation (Binns et al., 1992)

um+1 = um − J−1[Kmum − f] (9)

where J is the Jacobian matrix of the vector

F = Kmum − f (10)

with respect to the vector u.

2.5 Axisymmetric problems

The extension of the program to allow axisymmetric problems (class III) to be solved required
the correct calculation of the coefficients of the system matrix equation. The contribution due
to ordinary triangular elements as well as that of axisymmetric air-gap elements needed to be
calculated. The derivation of the coefficients due to ordinary first order triangular elements was
obtained from (Binns et al., 1992). These coefficients for the local element system are

Kij =
∫

Ωe

1
4A2µ

[
cicj +

1
r2

(ai + 2bir + ciz)(aj + 2bjr + cjz)
]

rdrdz (11)

fi =
∫

Ωe

Jϕ

(
ai + bir + ciz

2A

)
rdrdz (12)

which, unlike the coefficients for class I and II problems, is typically evaluated with a numerical
integration scheme such as Gaussian quadrature. The constants ai, bi and ci only depend on
the geometry of the triangle and A is the area of the triangle.

Axisymmetric air-gap elements have never been used before and so the coefficients of the
system matrix for this element was derived by the author. For an axisymmetric air-gap element
with inner radius a, outer radius b and length z0, the coefficients are given by

Kϵ
ij =

z0(b2 − a2)

2(c′i −
c2i
c′i

)(c′j −
c2j
c′j

)
· a0ia0j

+
z0

2

∞∑
n=1

(anianj + bnibnj)
∫ b

a

[
λ2

nf2i(r)f2j(r)rdr +
1
r2

f4i(r)f4j(r)
]

rdr (13)

8



with the functions f2i(r) and f4i(r) defined as

f2i(r) =

 I1(λnr) − I1(λnci)
K1(λnci)

K1(λnr)

I1(λnc′i) −
I1(λnci)
K1(λnci)

K1(λnc′i)

 (14)

f4i(r) = rλn

 I0(λnr) + I1(λnci)
K1(λnci)

K0(λnr)

I1(λnc′i) −
I1(λnci)
K1(λnci)

K1(λnc′i)

 (15)

The values of the constants a0i, ani, bni, ci, c′i and λn can be obtained from Wang (2003). The
integral in (13) is evaluated numerically and the infinite series is truncated at some point.

An expression for the coefficients of the Jacobian matrix used in the Newton-Raphson iterations
of the nonlinear solver is not reported in Binns et al. (1992). The author derived an expression
for these coefficients following the process of a similar derivation in Binns et al. (1992). The
coefficients are given by

Jij = Kij +
1

8A4
· ∂κ

∂(p2)
·

3∑
h=1

3∑
k=1

(∫
Ωe

tkjtihrdrdz

)
ukuh (16)

with
tij =

[
cicj +

1
r2

(ai + 2bir + ciz)(aj + 2bjr + cjz)
]

(17)

In (16), κ is the reluctivity and p is the magnitude of the flux density. The integral is evaluated
numerically using Gaussian quadrature.

3 Optimisation and parallelisation

Although it is possible to optimise machine designs based on analytical solutions of machine
parameters, this method is usually less accurate and not as powerful as multivariable optimi-
sation using finite element analysis. The latter process is, which is focused on in this work, is
illustrated in figure 8. The idea is to define the optimisation problem as follows,

Minimise : F (X) (18)
Subject to : G1(X) > g1 (19)

G2(X) > g2 (20)
G3(X) > g3 (21)
G4(X) > g4 (22)

Xli <= Xi <= Xui (23)

where X is the vector of design variables. Equation 18 is the objective function and equations
19 to 22 represent constraints which are also a function of X. The search space is defined
by lower and upper bounds on each design variable, Xli and Xui, as in (23). Referring to
figure 8, the finite element simulation is responsible for evaluating the objective function and
constraints for a vector of design variables. The optimiser's task is to find the optimal choice of
design variables. In order to do this, it is necessary to evaluate the objective function and the
constraints many times.

Considering this process, it is clear why it is necessary to minimise the computational time
of finite element simulations: A single optimisation process requires many simulations to be

9



Initialization

Optimizer

Converged?

yes

no

Optimal
design

Input
parameters

Finite-element
simulation

Output
parameters

Figure 8: Design optimisation using finite element analysis

Initialization

Optimizer

Converged?

yes

no

Optimal
design

Input
parameters

Finite element
simulation

Output
parameters

Input
parameters

Finite element
simulation

Output
parameters

Input
parameters

Time
steps 1

Time
steps 2

Time
steps 3

Output
parameters

Finite element
simulation

Figure 9: Parallel design optimisation using parallel finite element analysis

10



run. Depending on the complexity of the problem, this means that the effect of computational
efficiency for a single optimisation is not measured in seconds or in minutes, but in hours or
days.

In order to alleviate the problem of high computational cost, the optimisation process can make
use of parallelisation in several areas. The parallelisation implemented in this work is illus-
trated in figure 9. Comparing figures 8 and 9, it can be seen that the serial process has been
parallelised in two areas: the optimiser requests three simulations simultaneously and the time
steps of a single simulation is divided and solved on three separate CPU cores, illustrated by the
shaded blocks. Thus, in this example, a total of nine CPU cores can be used simultaneously.

At the time of writing, a suitable example of parallel optimisation was not yet available, although
successful tests were carried out. The optimisation described in section 4.2 did not make use
of any parallelisation.

4 Application

4.1 Case Study: Rotating Machine

The simulation of the double rotor, radial flux, air-cored, permanent magnet machine shown
in figure 10 was presented as part of an investigation into the accuracy and performance of
SEMFEM with support for machines with dual air-gaps (Gerber et al., 2010). This generator
is intended for wind power applications. The investigation showed that SEMFEM can produce
results that match those of commercial packages in comparable simulation times.

The machine was simulated for a single electrical period using SEMFEM and Ansoft Maxwell
2D. A single simulation consisted of 100 time-steps. Figure 11 shows a comparison of the
torque and flux linkage waveforms obtained with SEMFEM and Maxwell. The slight difference
in the offset of the torque waveforms is attributed to small inconsistencies in the models used
in SEMFEM and Maxwell. Both simulation packages produced noisy torque ripples using less
dense meshes. In the case of the flux linkage waveforms, the results are indistinguishable from
each other.

A
+

A
-

C
+

C
-

B
+

B
-

Figure 10: A radial flux, air-cored permanent magnet machine

11



0 2 4 6 8 10 12
time [ms]

210

211

212

213

214

215

216
To

rq
ue

[N
m

]
SEMFEM
Maxwell

0 2 4 6 8 10 12
time [ms]

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Fl
ux

lin
ka

ge
,λ

,[
W

b]

SEMFEM
Maxwell

Figure 11: Comparison of torque and flux linkage waveforms for the rotating machine from
SEMFEM and Ansoft Maxwell 2D.

4.2 Linear machine

The topology shown in figure 12 is presented as an example of a short stroke linear machine
for application in a Stirling engine which can be used in solar dish collectors. The dimensions
1 through 8 shown in figure 12 as well as the phase of the current i were chosen as the design
variables of the optimisation problem. The goal of the optimisation was to obtain a design
which can meet required power and efficiency specifications while being as light as possible.
The optimisation problem was formulated as

Minimise : F (X) = m

Subject to : Pout > 10 kW
η > 0.95
Byoke < 1.6 T
Btooth < 1.6 T

1

2

3

4

7

Finite-element model

5

8

6

w

Figure 12: An example of a short stroke linear generator

12



Table 1: Optimisation results: Objective function and constraint values

Method MFD SLP SQP PSO
m 35.1 kg 32.5 kg 33.0 kg 33.7 kg
Pout 9.98 kW 9.99 kW 10.0 kW 9.98 kW
η 97.8 % 96.8 % 96.7 % 96.8 %
Byoke 1.60 T 1.59 T 1.57 T 1.60 T
Btooth 1.60 T 1.60 T 1.60 T 1.60 T

0 5 10 15 20
time [ms]

−4

−3

−2

−1

0

1

2

3

4

Fl
ux

lin
ka

ge
,λ

,[
W

b]

SEMFEM
Magnet 6

0 5 10 15 20
time [ms]

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

Fo
rc

e
[N

]

SEMFEM
Magnet 6

Figure 13: Comparison of force and flux linkage waveforms for the linear machine from
SEMFEM and Magnet 6.

where X is the vector of design variables, m is the total mass of the machine, Byoke is the peak
flux density in the stator yoke and Btooth is the peak flux density in a stator tooth. Reasonable
upper and lower bounds were also placed on all of the design variables. This is necessary to
ensure that the optimiser does not generate a set of design variables that will crash the sim-
ulation and cause the optimisation process to terminate before completion. The RMS current
density in the coils was fixed at 4 A/mm2 and the desired output voltage was set at 400 V for
all simulations. The stroke of the machine was fixed at 40 mm.

The optimisation problem was solved using four different optimisation methods, namely the
modified feasible directions method (MFD), sequential linear programming (SLP), sequential
quadratic programming (SQP) and particle swarm optimisation (PSO). The first three methods
are part of dot, a commercial Fortran optimisation program. These methods are all gradient-
based. The fourth method is an implementation of the particle swarm algorithm as described
by Vanderplaats Vanderplaats (2007) with a few additions by the author. The gradient-based
optimisers have the advantage that an optimum is found using far less objective function eval-
uations. Global optimisation algorithms, such as the particle swarm algorithm, are generally
considered to be more robust than gradient-based algorithms.

The results for the objective function and constraint values are tabulated in table 1 In this case,
the different optimisation algorithms report roughly the same optimum objective function value.
Table 1 shows that the results from the SLP, SQP and PSO methods are especially similar.
This suggests that the optimum results obtained with these methods are trustworthy.

The optimal design was also simulated using Infolytica Corporation's Magnet 6 to verify the
accuracy of SEMFEM. A comparison of the results is shown in figure 13. Once again, the
results are in very good agreement.

13



5 Conclusions and recommendations

Finite element analysis coupled with numerical optimisation is a powerful method for the de-
sign of electrical machines. During this work, great progress was made in the development
of software for this purpose. The versatility offered by having a customisable finite element
simulation package available can be a great advantage in this design process. The package
has proved that - for the targeted problem classes - it's capabilities are at least on par with that
of commercial packages.

Possible future extensions of SEMFEM include

• Time-harmonic and transient simulation capabilities

• Eddy-current and hysteresis loss calculations

• Further parallelisation

The creation of a detailed user's guide, which would make this powerful tool easily accessible
to users, is also a high priority.

14



References

Abdel-Razek, A., Coulomb, J., Feliachi, M. and Sabonnadiere, J. (1981), `The calculation of
electromagnetic torque in saturated electric machines within combined numerical and ana-
lytical solutions of the field equations', IEEE Trans. Magn. 17(6), 3250--3252.

Abdel-Razek, A., Coulomb, J., Feliachi, M. and Sabonnadiere, J. (1982), `Conception of an
air-gap element for the dynamic analysis of the electromagnetic field in electric machines',
IEEE Trans. Magn. 18(2), 655--659.

Binns, K., Lawrenson, P. and Trowbridge, C. (1992), The Analytical and Numerical Solution of
Electric and Magnetic Fields, JohnWiley & Sons Ltd., Buffins Lane, Chichester, West Sussex
PO191UD, England.

Flack, T. and Volschenk, A. (1994), `Computational aspects of time-stepping finite element
analysis using an air-gap element', Proceedings of ICEM'94, Paris .

Gerber, S., Strauss, J. and Randewijk, P. (2010), Evaluation of a hybrid finite element analysis
package featuring dual air-gap elements, in `Proceedings of the XIX International Conference
on Electrical Machines', Rome.

Shewchuk, J. R. (1996), Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, in M. C. Lin and D. Manocha, eds, `Applied Computational Geometry: Towards
Geometric Engineering', Vol. 1148 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 203--222. From the First ACM Workshop on Applied Computational Geometry.

Vanderplaats, G. (2007), Multidiscipline Design Optimization, Vanderplaats Research & Devel-
opment, Inc., 126 Bonifacio Place, Suite F, Monterey, CA 93940.

Wang, R.-J. (2003), Design aspects and optimisation of an axial field permanent magnet ma-
chine with an ironless stator, PhD thesis, University of Stellenbosch.

15


