Computational investigation into using impinging jets with swirl to enhance the heat transfer in a solar cavity receiver

> Jesse Quick Supervisors: K.J. Craig, J.P. Meyer

Clean Energy Research Group (CERG), Department of Mechanical and Aeronautical Engineering,

UNIVERSITY OF PRETORIA

OUTLINE

- Background
- Receiver designs
- Receiver overview
- Initial concept
- Improving the concept
- Swirling impinging jets
- Numerical modelling
- Conclusions

BACKGROUND

- Central tower receivers hold significant promise for improving CSP efficiencies
- There is a need for further research in this area
- Improving the receiver
 designs can lower the cost of
 the CSP Plant and make it
 competitive with coal
- The bottom line is the cost

RECEIVER DESIGNS

RECEIVER MODEL

• OPTICAL MODELLING

- Sunlight reflections are modelled using SolTrace (Monte-Carlo ray tracing).
- The solar model was developed by Mr. M Slootweg at the University of

Pretoria.

INITIAL PERFORMANCE

From the initial proposed design by Mr. M Slootweg:

- Field to aperture efficiency: 86%
- Aperture capture efficiency: 90%
- Aperture to absorber efficiency:79%
- Thermal efficiency: 88.5%
- System efficiency: 54.1%
- Receiver efficiency: 69.9%

LIMITATIONS

- The previous work does not provide an optimized geometry
- The outer surface temperatures are higher than the melting temperature of steel and must be reduced
- The optical concentration mechanism is not optimal for the investigation (improvements are suggested)

- No internal fins used, but may be required
- The practical implementation of the design must be considered
- Operation of the design must be considered
- The design has a high pressure drop and low outlet temperature of

SWIRL HEAT TRANSFER

- Enhance heat transfer by up to 30%
- Still relatively underdeveloped and not adequately investigated
- Swirl generation methods –
 Geometric and aerodynamic
- Numerical modelling 2D axisymmetric, 3D RANS, and LES

SWIRL HEAT TRANSFER PARAMETERS

Non-dimensional parameter	Description
H/d	Nozzle height to impingement surface
r/d	Radial position from the centre of the jet
d/D	Impingement surface curvature
Nu	Nusselt number
Re	Reynolds number
S	Swirl number

GEOMETRIC SWIRL

3D RANS simulation of geometric swirl generator

AERO-DYNAMIC SWIRL

Denkleiers • Leading Minds • Dikgopolo tša Dihlalefi

2D axi-symmetric swirl

1.25

1.50 1.75

2.00

3D RANS SWIRL GENERATOR

Nusselt number distribution on flat plate for S=1.05

PROPOSED CONCEPT

Optical design

Receiver design RAYS COLD HTF HOT HTF nu nu_msalt 3.00e+02 2.70e+02 2.40e+02 2.10e+02 1.80e+02 1.50e+02 1.20e+02 9.00e+01 6.00e+01 3.00e+01 0.00e+00

LARGE EDDY SIMULATIONS

- LES has shown excellent prediction of jet impingement
- Currently under further investigation for a 20 million cell mesh with 1×10^{-6} time step
- The LES investigation covers flat and curved impingement surfaces
- Finally a LES Simulation will be conducted for the receiver

LARGE EDDY SIMULATION

	coefficient urface
	nitude on
UNIVERSITEIT UNIVERSITE YUNIVERSITH Denkeless - Leading Mi	18

NUMERICAL MODELS

Model	Applicability
2D axi-symmetric swirl	 Fails to adequately predict the stagnation point Nu Reasonable estimate of average heat transfer Predicts the location of peak Nu reasonable well Possible use for fundamental optimization
3D Steady RANS	 Fails to adequately predict the stagnation point Nu Provides far better predictions of Nu distribution Predicts geometric generated swirl very well Can be used for optimization of internal flow geometry
LES	 Based on preliminary investigation: Predicts <i>Nu</i> distribution well for geometric and aerodynamic generated swirl Predicts the stagnation point <i>Nu</i> far better Possibly the only method of predicting high swirl flows accurately, due to unsteady vortices

Conclusion

- The applicability of swirling impinging jets shows great promise
- RANS models do not show the best accuracy however they can be useful tools for optimization and general purposes
- LES simulations show the best accuracy at a significantly higher computational cost

FUTURE WORK

- Further investigations using LES.
- Optimization of swirl cone geometry.
- Practical implementation of the proposed design.
- The drainage considerations.
- Investigation of alternative heat transfer fluids.
- Ray tracing for accurate heat source modelling.

•ACKNOWLEDGEMENTS

- DST/NRF Solar Thermal Spoke for funding of student bursaries
- University of Pretoria (UP)
- CHPC in Cape Town, South Africa for cluster usage
- STERG for hosting the symposium and travel funding

www.chpc.ac.za

Questions?

