



Numerical investigation into the effect of peripheral windscreens on air-cooled <u>condenser fan performance under windy</u> conditions

### Adam Venter<sup>1</sup>, Michael Owen<sup>1</sup>, Jacques Muiyser<sup>2</sup>

<sup>1</sup>Solar Thermal Energy Research Group (STERG), Dept. Mechanical and Mechatronic Engineering, University of Stellenbosch

<sup>2</sup>Dept. Mechanical and Mechatronic Engineering, University of Stellenbosch





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019





## Outline

- Introduction
  - Background
  - Motivation
  - Objectives
- Experimental test facility
- Numerical modelling
  - Fan models
  - Single fan installation simulations
  - Multiple fan and windscreen test facility simulations
- Results
- Conclusions





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019





### Background

- Cooling systems
  - key feature affecting overall efficiency in thermoelectric power plants
  - 85% to 90% of the total water usage<sup>[1]</sup>
- Predominant wet cooling systems = highly water-intensive<sup>[1]</sup>
- Water usage = growing global concern
- Important that we look into means of reducing water consumption at thermoelectric power plants if we are to ensure both water and energy security into the future.





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





### Background

#### Air-cooled condensers (ACCs)

Water-conservative alternative to predominate wet cooling systems



### Background

Air-cooled condensers (ACCs)

- × Inefficient operation
- × High operating & capital cost
- × Cost-disadvantages
  - Poor heat transfer characteristics of air<sup>[4]</sup>
  - Sensitivity to ambient conditions<sup>[4]</sup>
  - = Capital cost & Operating costs ~ 3x & 2x > equivalent wet cooled system<sup>[5]</sup>
- ✓ Greater locational flexibility<sup>[6]</sup>
  - Complementary to concentrated solar power technologies
  - ✓ Free from the environmental drawbacks<sup>[7]</sup>
  - Air is available in abundance + no costs attached to its procurement or disposal<sup>[8]</sup>





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





Pros

Cons

### **Motivation**

- Remain an unpopular option of heat sink
- Reluctance in industry to adopt ACCs = highlights the need for continued efforts to lessen their undesirable aspects

#### Wind

- Most significant challenge facing ACC performance<sup>[10]</sup>
- × Deleterious effect on fan performance
- × Recirculation of hot exhaust plume
- × Imposes stresses on mechanical elements
- Porous wind screens as a wind effect mitigation device
  - Uncertainty in literature
  - Lack of consistent field data/experimental case validation





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





contact



### Objective

Numerically confirm the experimental measurements of Marincowitz (2018) & present a validated model that can be used to further understanding of the mechanisms that determine the effect of windscreens on ACC fan performance

 Through Computational Fluid Dynamic (CFD) simulations, using ANSYS Fluent.





6<sup>th</sup> Annual STERG Symposium TELLENBOSCH, SOUTH AFRICA





 $\langle \rangle$ 

## Multiple fan and windscreen test facility





- Figures taken from Marincowitz (2018)
- Geometrically similar to Caithness Energy Centers' ACC





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





 $\langle \rangle \rangle$ 

# **Numerical modelling**

### Fan models

- Most accurate method = explicit modelling
  - Large complex computational grid arrangements<sup>[10]</sup>
  - Highly computationally expensive<sup>[10]</sup>
- The use of simplified, implicit fan models is motivated
  - Pressure Jump Method (PJM)
    - Static-to-static pressure rise as a function of velocity
  - Actuator Disc Method (ADM)
    - Introduction of forces into the flow field determined using blade element theory
  - Extended Actuator Disc Method (EADM)
    - Modification of lift and drag coefficients used in ADM force calculations





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019





# **Numerical modelling**

### Single fan installation simulations

- Verification of correct fan model construction and implementation •
- Single fan tunnel from multiple fan and windscreen test facility simulated



visit concentrating.sun.ac.za sterg@sun.ac.za

1,6

1.8

0

 $\langle \rangle \rangle$ 

## **Numerical modelling**

### Multiple fan and windscreen test facility simulations

 $\langle \rangle$ 



### **Cross-flow**

- Reduction in edge fan performance with increasing cross-flow
- Peripheral fan (Fan 1) is most affected





1918-2018







FRG

### Windscreen Porosity

3x windscreen materials tested  $\rightarrow$  M50. M60, M75

Numeric designates porosity according to

$$\alpha = \left(\frac{d_{ws}}{P_{ws}}\right)^2$$

UNIVERSITEIT

**iYUNIVESITHI** 

TELLENBOSCH UNIVERSITY

1018-201



X x

×

X

Š

X ×

٥

× Experiment

♦ CFD

х

1,2

0,7

Š

Fan 1 -M50

 $d_{ws} \rightarrow \text{Diameter of wire}$  $P_{ws} \rightarrow$  Dimension of square opening



### Windscreen Porosity







6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019



visit concentrating.sun.ac.za contact sterg@sun.ac.za



 $\Diamond \Diamond$ 



#### Windscreen Length



### Windscreen Length







6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019



visit concentrating.sun.ac.za contact sterg@sun.ac.za



 $\langle \rangle$ 

# Conclusions

- The numerical model is capable of quantitatively predicting the experimental results for low cross-flow cases, & qualitative trends for higher cross flow cases.
- For the particular case; windscreens hurt fan performance although slight improvement is possible in very high cross-flow situations, depending on the screen length.
- Results limited by the two dimensional flow assumption
- Model can be confidently used to unpack the mechanisms that determine windscreen effects





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





## Conclusions

- Next steps
  - Use the validated modelling techniques to investigate the influence of windscreens in conjunction with.
    - Platform height
    - Fan row edge effects
    - Full-scale simulations





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019



visit concentrating.sun.ac.za contact sterg@sun.ac.za



 $\langle \rangle$ 

## Thank you

### **ACKNOWLEDGEMENTS:**

#### **National Research Foundation**

(NRF) – for their financial contribution to the project

### **CONTACT DETAILS:**

Adam John Venter Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

ajventer9@gmail. com +27 (0)79 873 5352

## visit us: concentrating.sun.ac.za

## References

- 1. DiFilippo, M. N. (2008) *Reclaiming Water for Cooling at SCE's Mountainview Power Plant.* Presentation: EPRI workshop on Advanced Thermoelectric Cooling Technologies, Charlotte.
- 2. Organisation for Economic Co-operation and Development (OECD). (2012) *OECD Environmental Outlook to 2050: The Consequences of Inaction*. Paris.
- 3. International Energy Agency (IEA). (2016) World Energy Outlook 2016. Paris.
- 4. Byers, E. A., Hall, J. W. and Amezaga, J. M. (2014) 'Electricity generation and cooling water use: UK pathways to 2050', *Clobal Environmental Change*, 25(1), pp. 16–30.
- 5. EPRI. (2004) *Comparison of Alternate Cooling Technologies for California Power Plants Economic, Environmental and Other Tradeoffs.* Palo Alto, CA.
- 6. Moore, J. *et al.* (2014) 'Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser', *Energy*, 69, pp. 378-391.
- 7. Gadhamshetty, V., Nirmalakhandan, N., Myint, M. and Ricketts, C. (2006) 'Improving Air-Cooled Condenser Performance in Combined Cycle Power Plants', *Journal of Engineering Energy*, 132(2), pp. 81-88.
- 8. Kröger, D. G. (2004) Air-Cooled Heat Exchangers and Cooling Towers, Penwell Corp, Tulsa, OK.
- 9. Maulbetsch, J. and DiFilippo, M. (2016) Final Project Report the Use of Wind Barriers To Air-Cooled Condensers.





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





## References

- 10. Van der Spuy, S. J. (2011) *Perimeter Fan Performance in Forced Draught Air-cooled Steam Condensers*. PhD Dissertation, Department of Mechanical and Megatronic Engineering, University of Stellenbosch.
- Marincowitz, F.S. (2018) *Experimental investigation of the effects of windscreens on air-cooled condenser fan performance and dynamic blade loading*, Unpublished MScEng Thesis, Department of Mechanical Engineering, University





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019



visit concentrating.sun.ac.za contact sterg@sun.ac.za



## Questions

### Fan models

- Angles of attack ranging from -90° to 90  $^\circ$  can be expected in an axial flow fan
- Lift and drag coefficients in force calculations are determined through isolated 2D air foil profile tests









6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA



visit concentrating.sun.ac.za contact sterg@sun.ac.za



 $\langle \rangle \rangle$ 



### Fan models

• L2 Fan – FX 60-126 air foil



- Low flow rates
  - Centrifugal loading initiates an absolute radial flow path = alters the lift and drag characteristics of the fan blade





6<sup>th</sup> Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA





 $\langle \rangle \rangle$ 



### Fan models

L2 Fan - FX 60-126 air foil ۰



- .
  - \_ fan blade





6<sup>th</sup> Annual STERG Symposium



visit concentrating.sun.ac.za sterg@sun.ac.za contact



 $\langle \rangle$