

Concentrating solar technology for the generation of high temperature process heat for industrial applications in South Africa: A pre - feasibility study in sustainable hydrogen production

Moodley S¹, Dr. JE Hoffmann ¹

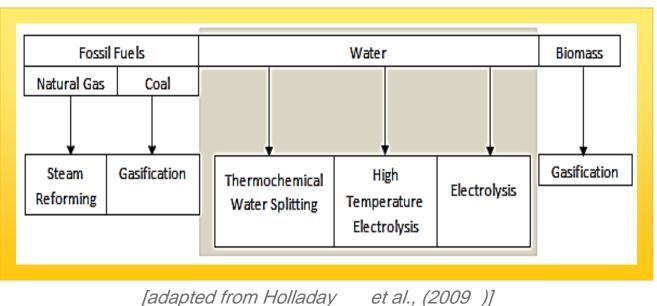
¹Solar Thermal Energy Research Group (STERG), University of Stellenbosch

IYUNIVESITHI

STELLENBOSCH

Background and motivation

- Sustainable hydrogen production methods
- CST integration with Cu CI hydrogen production process
 - Heat process requirement
 - Electric process requirement
- Simulation methods and results
 - literature
 - current study
- Conclusion
 - Feasibility
 - Future work

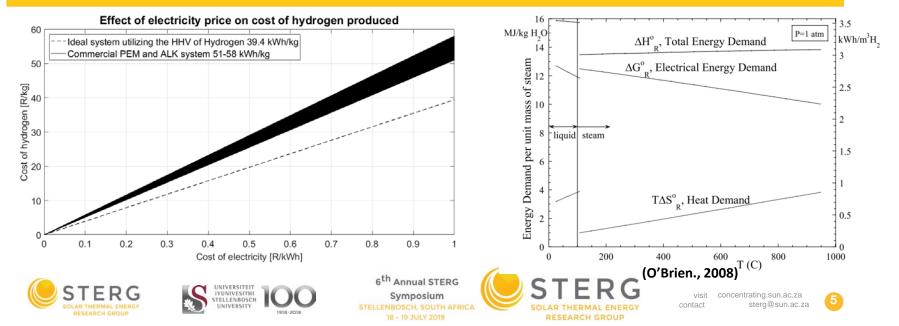

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Background and motivation

Highlighted methods for sustainable production of hydrogen.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRIC/ 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za


 $\langle O \rangle$

Background and motivation

Limit to cost reduction achievable by electricity price influence – leads to need for the introduction of heat

$$H_2O_{(\text{liquid})} + 237.2 \frac{kJ}{\text{mole}} \text{ electricity} + 48.6 \frac{kJ}{\text{mole}} \text{ heat} \rightarrow H_2 + \frac{1}{2}O_2 \text{ [STP]}$$

<

- Background and motivation
 - Sustainable hydrogen production methods
- CSP integration with Cu
 Cl hydrogen production process
 - Heat process requirement
 - Electric process requirement
- Simulation methods and results
 - literature
 - current study
- Conclusion
 - Feasibility
 - Future work

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

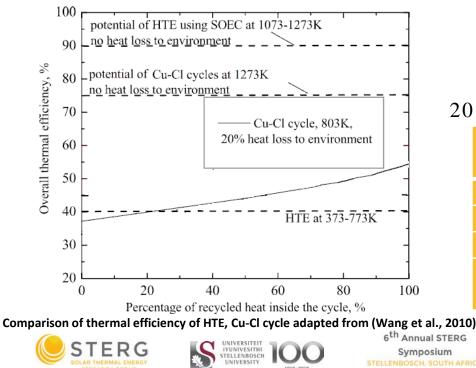
CSP integration with Cu-Cl hydrogen production process

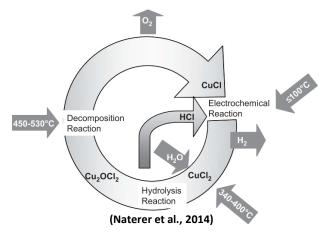
Processes which consider the addition of heat

1918-2018

High temperature steam electrolysis SOEC 800 – 1 000°C	Intermediate Temperature Steam Electrolysis (ITSE) 600-650°C	Thermochemical water splitting 450-530°C
 Research phase Material instability Electrode degradation at elevated temperature Acidic environment for plant material at elevated temperature at 1000°C, the electric energy consumption required unfavourably represents 61% of the total energy demand 	 Aims to eliminate the degradation associated high temperature electrolysis Corrosive environment for electrodes and cell material stack lifetime, performance under thermal loads and suitability to centralized large-scale generation require further investigation Under varying loads, risk the production of impure hydrogen 	 within the heat quality range of current concentrating solar thermal technology each step and reaction completion demonstrated on laboratory scale electrolysis occurs at low temperature and pressure, favourable for material stability Reduced electric requirement
STERG	6 th Annual STERG Symposium	ERG visit concentrating.sun.ac.za contact sterg@sun.ac.za

STELLENBOSCH, SOUTH AFRICA


18 - 19 JULY 2019


SOLAR THERMAL ENERGY

RESEARCH GROUP

CSP integration with Cu-Cl hyd production process

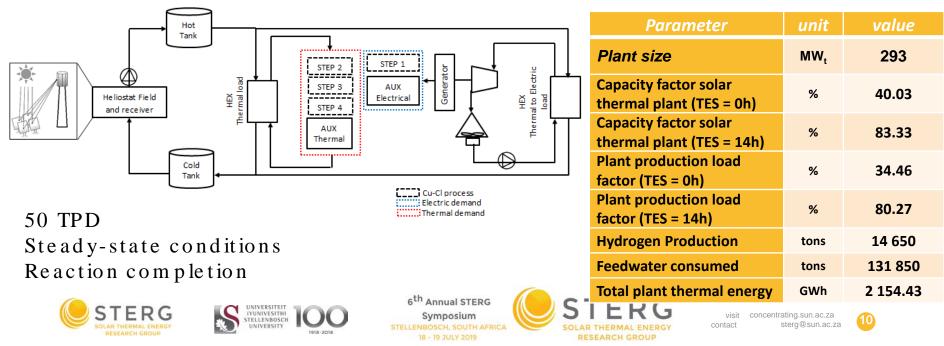
Heat and electric requirements

20% of the energy flow is electric (step 1)

Step	Temperature Range [°C]	Energy input [kJ/mol H ₂]
1. Electrolysis	~100	52.3
2. Separation/drying	<100	122.2
3. Hydrolysis	350-400	227.9
4. Thermal decomposition	450-530	149.4

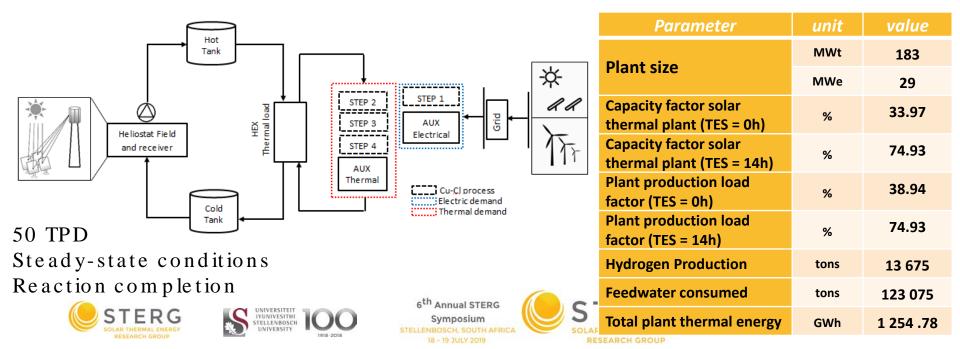
- Background and motivation
 - Sustainable hydrogen production methods
- CSP integration with Cu CI hydrogen production process
 - Heat process requirement
 - Electric process requirement
- Simulation methods and results
 - literature
 - current study
- Conclusion
 - Feasibility
 - Future work

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA



NREL's SolarPILOT 1.2.1 and MATLAB were used to simulate each hour of a TMY year in Upington , South Africa [8760 points]

 $\langle O \rangle$


MODEL 1: CST plant - thermal and electric load

NREL's SolarPILOT 1.2.1 and MATLAB were used to simulate each hour of a TMY year in Upington , South Africa [8760 points]

MODEL 2: CST plant - thermal load & Grid - electric load

 $\langle \rangle$

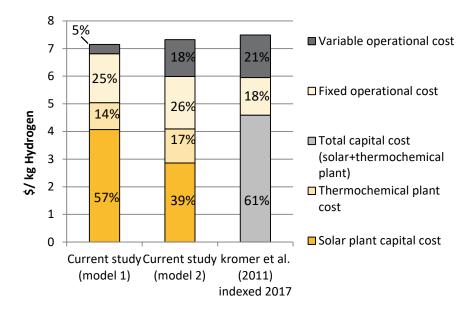
Levelized cost of hydrogen

Optomization of levelized cost of hydrogen to solar multiple and TES capacity 9.5 9.4 TES 8h - TES 10h 9.3 TES 12h 9.2 9.1 TES 14h TES 16h a TES 18h 8.9 8.8 8.7 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 2.2 2.4 2.6 2.8 3 3.2 Solar multiple 6th Annual STERG Symposium TELLENBOSCH 18 - 19 JULY 2019

<u>Model 1: \$7.15/kg</u> <u>Model 2: \$7.32/kg</u> <u>Cycle efficiency: 22.7%</u>

Where LHV_{H2} is 242 kJ/mol Q is the thermal energy supplied to the process by external sources per mol of hydrogen produced E is the electrical energy supplied to the process by external sources per mol of

hydrogen produced


visit

contact

 $\langle O \rangle$

Levelized cost of hydrogen

Model 1: \$7.15/kg Model 2: \$7.32/kg \$ Indexed to 2017

10% discount rate (H2A assumption)

Similar to that found in literature study utilizing H2A assumptions Above target price of \$2/kg

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

 $\langle \rangle$

- Background and motivation
 - Sustainable hydrogen production methods
- CSP integration with Cu Cl hydrogen production process
 - Heat process requirement
 - Electric process requirement
- Simulation methods and results
 - literature
 - current study
- Conclusion
 - Feasibility
 - Future work

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Conclusions

- Fe as ib ility and future work
 In comparison to SMR (9 kg CO2 per 1 kg of H2) plant omits 131 850 metric tons of CO2 for 14 650 metric tons of Hydrogen annually (50
 - An Oxygen resale price of \$1.91/kg is required to reach the target hydrogen price. Market price found currently \$0.1/kg
 - Levelized cost of hydrogen most sensitive to discount rate , capital cost and *solar resource*
 - Future work should consider a detail CST model linked to a hydrogen production process model to broaden understanding of effects of electric and thermal supply variability and heat recovery within the process to improve cycle efficiency
- 1 w w w .intratec.us/ chem ical-markets/ oxygen-price

TPD

Thank you for your time and attention

ACKNOWLEDGEMENTS:

CRSES

CONTACT DETAILS:

Seranya Moodley Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

22106235@sun.ac.za

visit us: concentrating.sun.ac.za