

Design of Multicopter for Heliostat - Field Cleaning Purposes

Valentina Herrera

MSc Sustainable Energy Systems

Dr. Willie Smit: Stellenbosch University

Prof. Felipe Mendes: Instituto Superior Tecnico Lisboa

Outline

- Introduction to heliostat cleaning
- Drone selection model
- Application to CSP plant

Heliostat Cleaning

Current methods

- Reflectivity is key
- Regularly cleaning
- High amount of water
- Broken mirrors
- Constant manpower

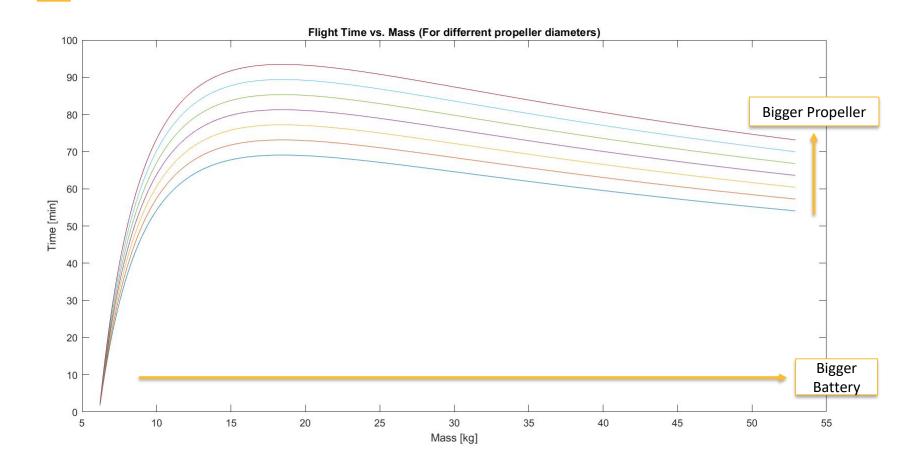
Gemasolar plant, property of Torresol Energy, Cleaning Technology property of ECILIMP Source: https://www.solarpaces.org/marrakesh-conference-presented-solutions-for-reducing-water-use-in-csp/

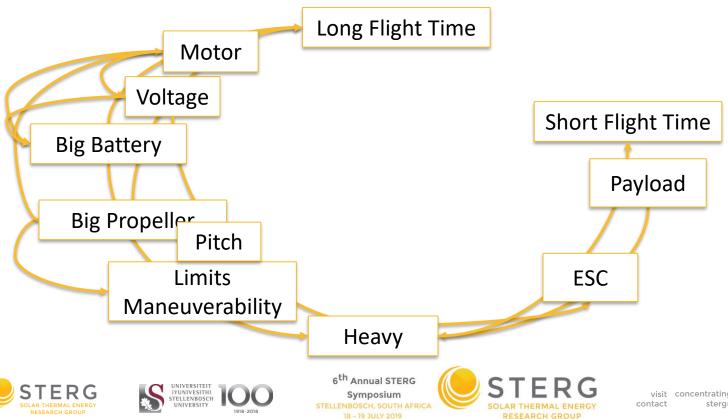
Heliostat Cleaning

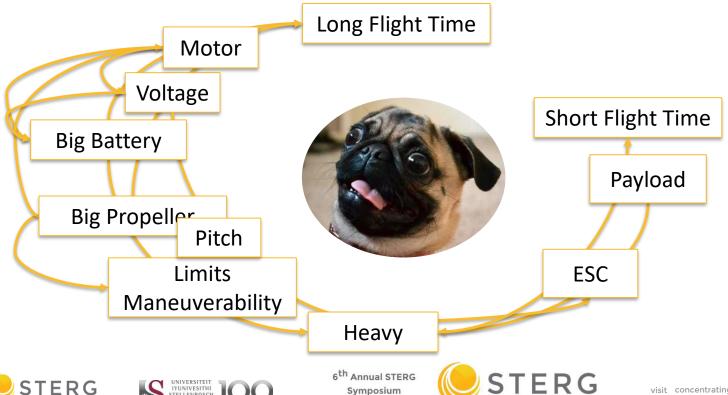
Researched method

Gemasolar plant, property of Torresol Energy, Cleaning Technology property of SENER Source: http://www.sener-aerospace.com

- Reflectivity is key
- Cleaning regularly
- Low amount of water (0.03l/m2)
- No broken mirrors
- Maximize cleaning capacity/hour
- Autonomous system
- Direct contact and deep cleaning
- Homogenous cleaning
- No impact on on-site roads



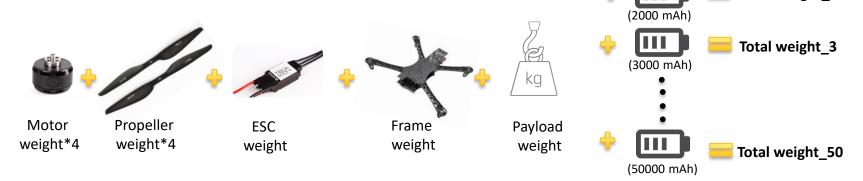




RESEARCH GROUP

Select a reference drone based on a required payload.

- 100 commercial motors with suggested:
 - Propeller
 - ESC
 - Battery voltage
- Plus 50 sizes of batteries

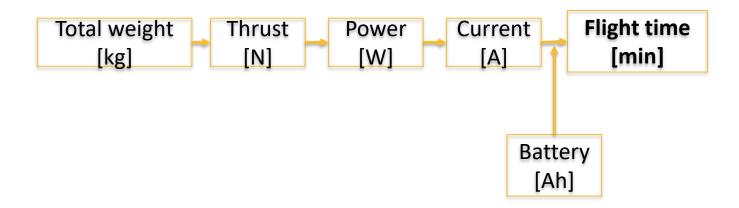

Total weight 1

Total weight 2

(1000 mAh)

Select a reference drone based on a required payload.

- 100 commercial motors with suggested:
 - Propeller
 - ESC
 - Battery voltage
- Plus 50 sizes of batteries



Momentum & Blade Element Theory

Source: Johnson, Wayne. (1994). Helicopter Theory.

Configuration with the best flight-time is selected

```
Payload: 2 kg
```

```
Configuration = 58

Propeller size [in] = 28

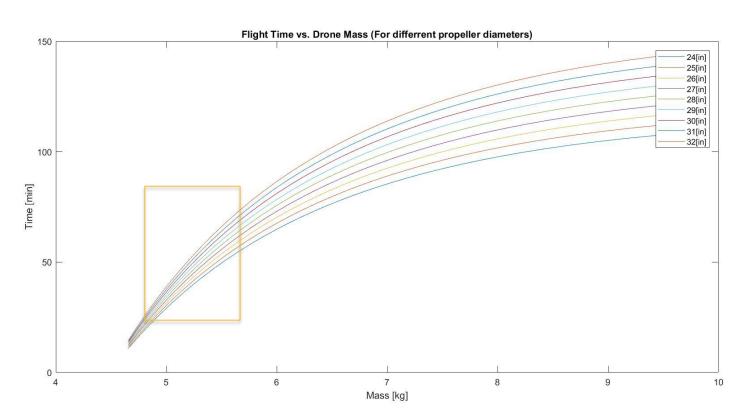
Pitch [in] = 9.2

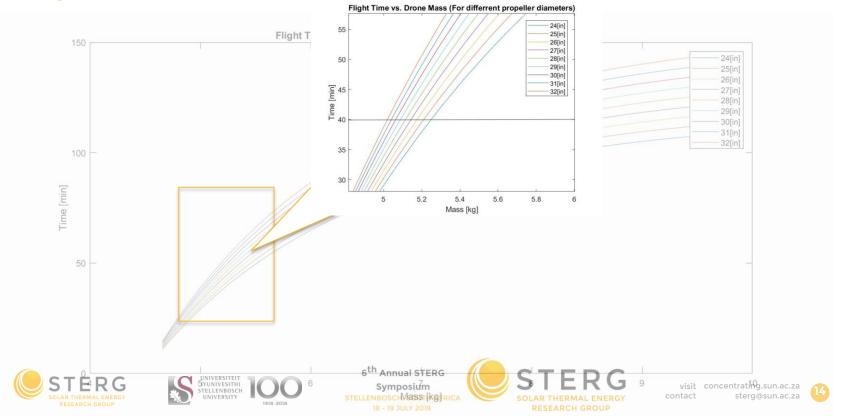
Battery voltage (*3.7 V) = 6

Max thrust [g] = 19516

Drone weight with NO battery [g] = 4334.5
```

Source: Johnson, Wayne. (1994). Helicopter Theory.





Flight-Time vs. Mass

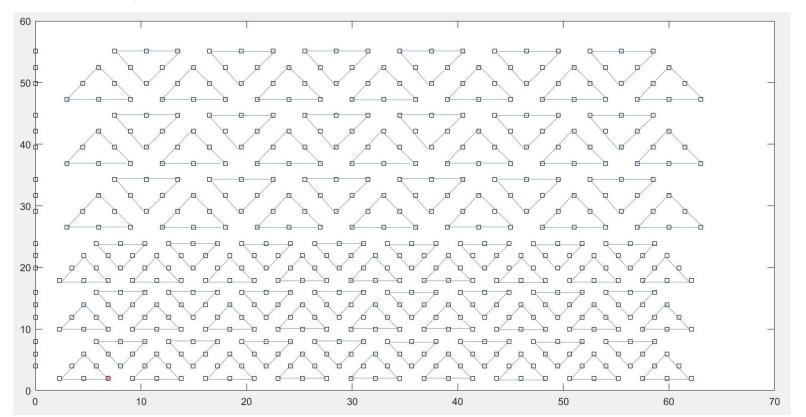
Flight-Time vs. Mass

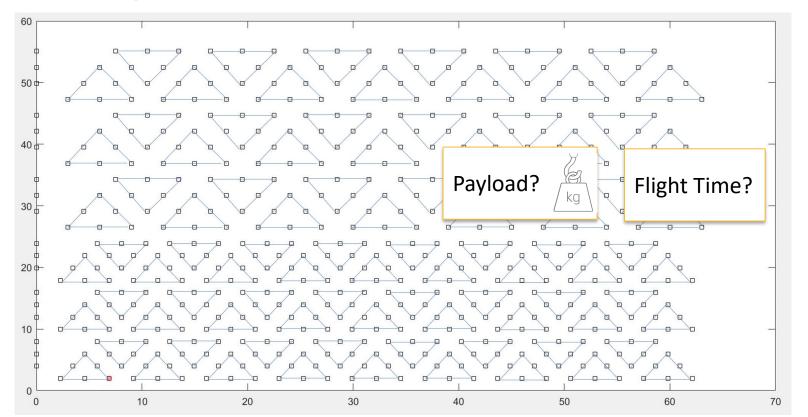
Flight time: 40 min / Payload: 2kg

Diameter_in	pitch_in	Batt_Energy_mAh	Batt_Weight_g	AUW_g	RPM	Power_W	Torque_Nm
	-	1	-	·) 	-	-	1)
24	7.7	7000	966	5301	1808	92	0.49
25	8.1	6000	849	5184	1635	86	0.5
26	8.4	6000	849	5184	1515	82	0.52
27	8.7	6000	849	5184	1408	79	0.54
28	9	6000	849	5184	1311	76	0.56
29	9.4	5000	732	5067	1201	71	0.57
30	9.7	5000	732	5067	1124	69	0.59
31	10	5000	732	5067	1055	67	0.6
32	10.3	4500	674	5009	986	64	0.62

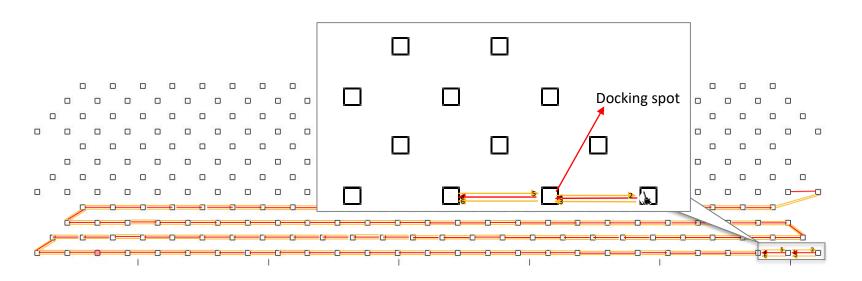
Longer flight-time

Lower maneuverability





Case study: 540 heliostats field



Case study: 540 heliostats field

Path: 1 cleaning device

Path: 1 cleaning device

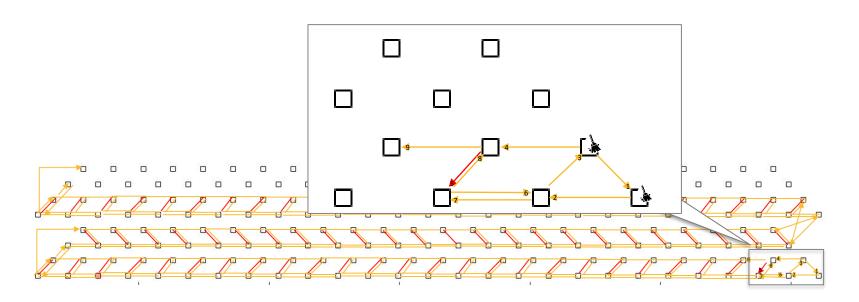
```
Total water to clean field [1] = 36.17

Total water required per device [1] = 36.17

Total time to clean field [hours] = 37.61

Drone waiting time (per set of mirrors) [min] = 3.13

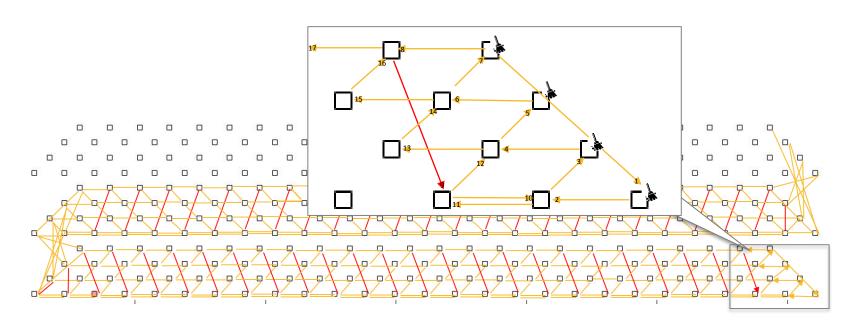
Drone total airborne time [hours] = 9.40
```



Path: 2 cleaning devices

Path: 2 cleaning devices

```
Total water to clean field [1] = 36.17
Total water required per device [1] = 18.08
Total time to clean field [hours] = 18.90
Drone waiting time (per set of mirrors) [min]
Drone total airborne time [hours] = 7.91
```



Path: 4 cleaning devices

Path: 4 cleaning devices

```
Total water to clean field [1] = 36.17
Total water required per device [1] = 9.04
Total time to clean field [hours] = 10.17
Drone waiting time (per set of mirrors) [min] = 1.38
Drone total airborne time [hours] = 7.07
```


Decide payload and flight time according to constraints

- Main constraint:
 - Clean each mirror every 7 days
- Total water required per device:

- 9 liters (for the entire field) / 7 days= 1.3 l / day
- Required airborne time per day:
 - 7 hours (for the entire field)/7 days1 h/day

```
Total water to clean field [1] = 36.17

Total water required per device [1] = 9.04

Total time to clean field [hours] = 10.17

Drone waiting time (per set of mirrors) [min] = 1.38

Drone total airborne time [hours] = 7.07
```


Decide payload and flight time according to constraints

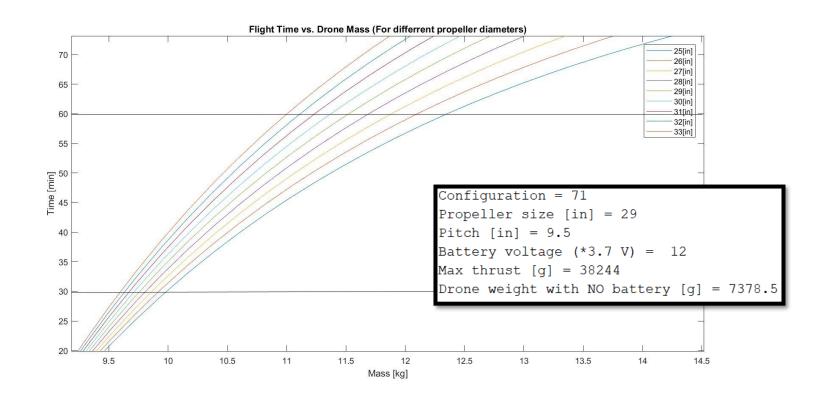
- Main constraint:
 - Clean each mirror every 7 days
- Total water required per device:
 - 9 liters (for the entire field)/ 7 days= 1.3 l/ day
- Required airborne time per day:
 - 7 hours (for the entire field)/7 days1 h/day

Total water to clean field [1] = 36.17

Total water required per device [1] = 9.04

Total time to clean field [hours] = 10.17

Drone waiting time (per set of mirrors) [min] = 1.38


Drone total airborne time [hours] = 7.07

Payload:

- 2kg (cleaning robot) + 1.5 kg (water)+ 0.5 kg (safety margin) = 4kg
- Flight time:
 - No battery recharge = 1 h
 - 1-time battery recharge = 30 min

Plug in Payload and Flight time into Drone Selection Model

Flig	ght t	time:
30	min	

Payload: **4kg**

Diameter_in	pitch_in	Batt_Energy_mAn	Batt_Weight_g	AUW_g	RPM	Power_w	Torque_Nm
							
25	8.1	6000	2567	9945	2281	228	0.95
26	8.4	6000	2567	9945	2114	219	0.99
27	8.7	6000	2567	9945	1964	211	1.02
28	9	5000	2348	9727	1810	197	1.04
29	9.4	5000	2348	9727	1676	190	1.08
30	9.7	5000	2348	9727	1569	183	1.12
31	10	5000	2348	9727	1472	178	1.15
32	10.3	4000	2130	9508	1368	166	1.16
33	10.7	4000	2130	9508	1279	161	1.2

FΙ	ig	ht	ti	m	e:
1 k	1				

Payload: **4kg**

Diameter_in	pitch_in	Batt_Energy_mAh	Batt_Weight_g	AUW_g	RPM	Power_W	Torque_Nm
25	8.1	17000	4968	12346	2542	315	1.18
26	8.4	16000	4750	12128	2334	295	1.21
27	8.7	15000	4531	11910	2149	276	1.23
28	9	14000	4313	11691	1984	259	1.25
29	9.4	13000	4095	11473	1820	243	1.28
30	9.7	13000	4095	11473	1704	235	1.32
31	10	12000	3876	11255	1584	221	1.33
32	10.3	11000	3658	11037	1474	208	1.35
33	10.7	11000	3658	11037	1378	202	1.4

Fli	gh	ıt	tii	m	e:
30	m	nir	1		

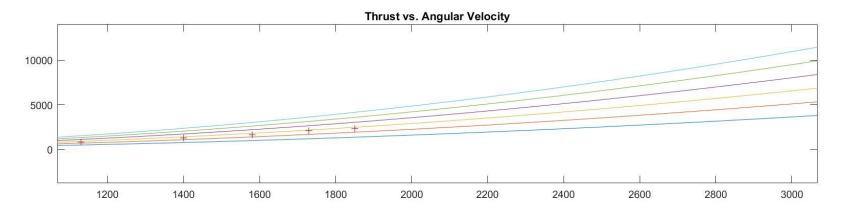
Diameter_in	pitch_in	Batt_Energy_mAh	Batt_Weight_g	AUW_g	RPM	Power_W	Torque_Nm
25	8.1	6000	2567		2281	228	0.95
26	8.4	6000	2567		2114	219	0.99
27	8.7	6000	250		1964	211	1.02
28	9	5000		< * S	1810	197	1.04
29	9.4	5000		المحرو	1676	190	1.08
30	9.7	5000	34 C		1,569	183	1.12
31	10	500	SUC		172	178	1.15
32	10.3		ns a		1368	166	1.16
33	10.7	ri(),,,	208	1279	161	1.2
		:+2(1)	ons and co				

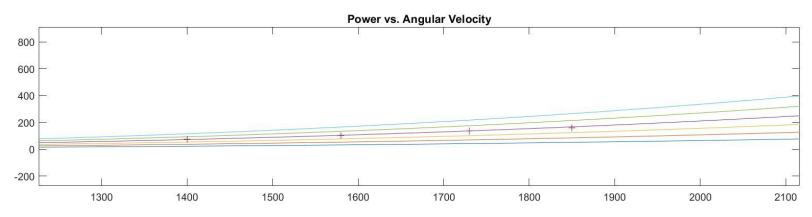
Flight time: 1 h

Diamet		relimin	_Weight_g	AUW_g	RPM	Power_W	Torque_Nm
	202	110					
25	COLLIA		4968	12346	2542	315	1.18
26		J	4750	12128	2334	295	1.21
27		15000	4531	11910	2149	276	1.23
28		14000	4313	11691	1984	259	1.25
29	.4	13000	4095	11473	1820	243	1.28
30	9.7	13000	4095	11473	1704	235	1.32
31	10	12000	3876	11255	1584	221	1.33
32	10.3	11000	3658	11037	1474	208	1.35
33	10.7	11000	3658	11037	1378	202	1.4

Summary & Conclusion

- Heliostat Cleaning: is a key operation in CSP plants. Automation of this operation will be beneficial.
- Drone Selection Model: A high-level model is necessary to estimate drone's characteristics for a specific application.
- Application to Heliostat Field: To estimate the payload and flight-time of the drone, a path must be designed, while considering the plant's operation constraints.





Backup Slide

Backup Slide

ltem No.	Voltage (V)	Propeller		Current (A)	Input power (W)	RPM	Torque (N*m)	Thrust (g)	Efficiency (g/W)
			40%	3.9	189.5	1583	0.77	2424	12.79
			42%	4.4	213.8	1654	0.85	2611	12.21
			44%	4.8	234.7	1724	0.91	2859	12.17
			46%	5.3	257.8	1791	0.98	3026	11.73
			48%	6.2	301.4	1909	1.09	3480	11.54
			50%	6.6	319.1	1962	1.14	3556	11.14
			52%	7.2	349.6	2044	1.22	3851	11.01
			54%	7.8	378.5	2102	1.29	4090	10.80
			56%	8.3	405.0	2162	1.35	4270	10.54
U10II	128	T-motor	58%	8.9	430.5	2227	1.4	4439	10.31
KV100	(48V)	G29*9.5CF	60%	9.6	467.8	2293	1.49	4701	10.04

Diameter_in	pitch_in	Batt_Energy_mAh	Batt_Weight_g	AUW_g	RPM	Power_W	Torque_Nm
25	8.1	6000	2567	9945	2281	228	0.95
26	8.4	6000	2567	9945	2114	219	0.99
27	8.7	6000	2567	9945	1964	211	1.02
28	9	5000	2348	9727	1810	197	1.04
29	9.4	5000	2348	9727	1676	190	1.08
30	9.7	5000	2348	9727	1569	183	1.12
2.1	1.0	E000	0040	0707	1 470	150	4 4 5

contact

Cost Comparison

\$340*2

\$100

30 min

\$200

1 h

\$400

