A Techno-Economic Analysis of Parabolic Trough CSP Plants for Profitability Enhancement

Nogues Ollier MEng candidate Supervisor: Prof Thomas Harms

Solar Thermal Energy Research Group (STERG), University of Stellenbosch

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Technology Description

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Motivation, Objectives, Methodology 📀

Cost Drivers

Breakdown of the LCOE

Breakdown of the initial investment for 100 MW

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Review of Techno-Economic Options ••

Solar field	HTF	TES	Scale-up	Project Financing
 Reduce CAPEX: larger collectors: Ultimate Trough Performance: selective coating; Mirror reflectivity 	 Molten salt Direct steam generation Air 	 Direct 2-tank Thermo- cline Latent heat Thermo- chemical 	 Economies of scale 	 ✓ Lower debt interest rate ✓ Tax incentives ✓ Public finance
	6 ^t		CTEDC	

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Reference Plant

Site: (-28.537, 21.078), 2630 kWh/m^2/year

Pretoria Johannesburg Upington Bloemfontein Durban Fast London Cape Town Port Elizabeth

Source of TMY weather data: European Commission (2019)

6th Annual STERG Symposium TELLENBOSCH, SOUTH AFRICA

Input/Assumptions

- **Solar field:** EuroTrough collector (150 m long, 5.75 m wide); Schott PTR70 2008 receiver.
- **HTF:** Therminol VP-1 (293-393 °C)
- Thermal Energy Storage: 5 hours; Hitec XL molten salt; 2-tank indirect.
- **Power block:** 100 MW net; Dry cooling; Cycle efficiency = 36.4 %.
- Capacity factor: 45 %.
- Financing: 25 years PPA; 10 % interest rate; 16 % target IRR; DSCR = 1.35; 10 % discount rate.

Results: Solar Field

Input/Assumptions: Adapted from Ruegamer et al. (2013)

- Ultimate Trough: 247 m long; 7.5 m aperture.
- Schott PTR80 receiver: 80 mm OD.
- Solar field specific cost (\$/m^2): -13 % for 4 SCAs/loop; -6.5% for 2 SCAs/loop.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

 $\langle \rangle \rangle$

Results: HTF and TES

Input/Assumptions: Adapted from Ruegamer et al. (2013)

- Cycle efficiency: 41 % for Solar Salt; 39 % for Hitec XL.
- Solar field cost (\$/m^2): +6 %
- TES cost (\$/kWhth): -50 % for Hitec XL; -60 % for Solar Salt.
- Power block cost (\$/kWe): -15 % for Hitec XL; -17 % for Solar Salt.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Results: Financing

Effect of reducing equity rate and debt interest rate

The effect of investment tax credits (ITC)

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za

 $\langle \rangle \rangle$

Proposed Cost Reduction Path

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Sensitivity Analysis

HTF and TES model

- ---- Solar field cost
- ---- Power plant cost
- -Balance of plant cost

Sensitivity Analysis

Effect of reducing equity rate and interest rate

Modified Parameter:

- Decrease DSCR from 1.35 to 1.2
- Results are not affected.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Conclusion

- **Most important cost drivers**: installed cost dominated by the solar field; financing costs (interest payment).
- Most promising cost reduction paths:
 - 1. Reduce capital cost: solar field offers more opportunity
 - 2. Improve financing conditions to reduce interest payment. Public financing tools are important to reduce the perceived financial risk.
 - 3. Performance improvement: molten salt heat transfer fluid and direct two-tank storage.
- Cost reduction potential:
 - 1. Ultimate Trough (also other large collectors) found to reduce nominal LCOE by 4 %. Could be more.
 - 2. Hitec XL is currently more appropriate as molten salt HTF: ~14 % reduction in LCOE.
 - 3. Decreasing interest rate by 4 %: ~19-22 % reduction in LCOE.
 - 4. Investment tax credit: LCOE reduction by 1.7 USD c/kWh for every 10 % credit.
 - 5. Cumulative cost reduction potential: 38-41 %

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Future Work

• Validation of the findings with a different modelling software.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

visit concentrating.sun.ac.za contact sterg@sun.ac.za

References

- \mathbf{O}
- CH4 Energy Group. 2019. Concentrated Solar Power (CSP) [Online]. Available: http://www.ch4energygroup.com/csp/ [2019, July 15].
- European Commission. 2019. Photovoltaic geographical information systems [Online]. Available: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#TMY [2019, July 15].
- New Energy Update: CSP. 2019. World's largest CSP project achieves financial closure [Online]. Available: http://newenergyupdate.com/csp-today/worlds-largest-csp-project-achieves-financial-closure-us-announces-33mn-csp-funding [2019, July 15].
- Ruegamer, T., Kamp, H., Kuckelkorn, T., Schiel, W., Weinrebe, G., Nava, P., & Richert, T. 2013. Molten salt for parabolic trough applications: system simulation and scale effects. Energy Procedia. 49:1523-1532.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA

THANK YOU

ACKNOWLEDGEMENTS:

The Mandela Rhodes Foundation

Kathu Solar Park (RF) Pty Ltd

CONTACT DETAILS:

Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za