

Long-term energy storage options for CSP and other variable renewable energy in South Africa

Johan D Burger, Thomas M Harms & A Ben Sebitosi

Outline

Brief outline of the presentation:

- Introduction:
 - VRE in South Africa
 - Why storage?
- Storage:
 - Categories of storage
 - Evaluation metrics, what is important?
 - Different types
 - Worldwide research

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

 $\langle \rangle \rangle$

Outline

Brief outline of the presentation:

- Evaluation method: LCOS & sensitivity analysis
- Recommendations
- Conclusion

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Variable renewable energy?

- What is VRE?
 - Relies on natural phenomena
 - Fairly unpredictable
 - Cannot function as baseload
- How is the success of RE source defined?
 - How well it matches demand curve

VRE in South Africa

- Renewable: 13%
- Non-renewable: 87%

*Information sourced from March 2019 version of the Draft IRP which is subject to change

6th Annual STERG Symposium ITELLENBOSCH, SOUTH AFRICA

visit concentrating.sun.ac.za contact sterg@sun.ac.za

VRE in South Africa

- From 2018 Draft IRP, least-cost scenario (IRP1):
 - No annual renewables build limit
 - Cheapest new build option as coal decommissions^[2]
 - ≈R15-55 bn/yr cheaper by 2040
 - ≈R30-60 bn/yr cheaper by 2050
 - Least CO₂
 - Greatest reduction in water usage

Employment Opportunities

- Anticipated jobs by 2030^[1]
 - 246 000 jobs for Solar PV
 - 344 000 jobs for wind

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA

a 9

VRE in South Africa

- South Africa has an unique opportunity
 - How can we boost VRE build capacity?
 - How can we increase grid penetration?

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Proposed solution: Storage

- Need for storage:
 - Current VRE cannot function as baseload supplier
 - As VRE penetration grows, need for storage increases
 - Able to store excess energy & prevent curtailment
 - Increased financial security

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

 \mathbf{C}

Storage

Long-term storage

- What defines "long-term?"
- Potential applications
- Limitations

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA

visit concentrating.sun.ac.za contact sterg@sun.ac.za

 $\Diamond \Diamond$

The different categories of storage

- Daily storage
- Weekly storage
- Seasonal storage
- Annual/indefinite storage

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Evaluation metrics, what is important?

The following metrics are important to consider:

6th Annual STERG Symposium ITELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Evaluation metrics, what is important?

Depending on the application, certain parameters become more important than others.

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA 18 - 19 JULY 2019

Different storage mechanisms

Different storage mechanisms

visit concentrating.sun.ac.za sterg@sun.ac.za

Different storage mechanisms

visit concentrating.sun.ac.za ntact sterg@sun.ac.za

Storage

Worldwide research

- Current research:
 - International interest
 - Application of technology
- Future research

6th Annual STERG Symposium STELLENBOSCH, SOUTH AFRICA

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Energy cost: LCOS

Levelized cost of storage

- Economic evaluation based on:
 - Sensitivity analysis
 - Levelized cost of storage^[3]:

$$LCOS = \frac{CAPEX + \sum_{t=1}^{t=n} \frac{A_t}{(1+i)^t}}{\sum_{t=1}^{t=n} \frac{W_{out}}{(1+i)^t}}$$

CAPEX - Capital expenditure for storage A_t - Annual cost of storage W_{out} - Annual energy output

- i interest rate
- t year of calculation
- n financial lifetime

Recommendations

 $\langle \rangle$

Storage solution for SA?

- From research:
 - No single "one size fits all" solution
 - Storage will likely be a per-application approach
 - Long-term (expensive) vs short-term

Recommendations

Long-term storage for CSP

- Thermo-chemical storage
 - Higher energy density storage
 - Possible heat storage at room temperature
 - Constant temperature heat release at restitution temperature set by reaction equilibrium

Recommendations

- Latent-heat storage
 - High storage density
 - Heat charging/discharging occurs at a constant temperature

6th Annual STERG Symposium

Conclusion

Future of RE in South Africa

- New build RE is largely steered by policy
- Storage will facilitate greater grid
 penetration
- The application of storage technology will depend on the specific need

THANK YOU

ACKNOWLEDGEMENTS:

Prof TM Harms Prof AB Sebitosi

CONTACT DETAILS:

Johan D Burger Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za

References

- [1] Department of Energy South Africa, "Integrated Resource Plan (IRP) 2018_Draft Update", 2019. Accessed on: April 15, 2019. [Online]. Available: https://www.ee.co.za/wp-content/uploads/2019/04/Updated-Draft-IRP2019-6-March-2019.pdf
- J. G. Wright, J. Calitz, N. Ntuli, R. Fourie, M. Rampokanyo, and P. Kamera, "Formal comments on the Draft Integrated Resource Plan (IRP) 2018 (Report) v1.2,", October 2018. Accessed on: Feb 6, 2019. [Online]. Available: https://researchspace.csir.co.za/dspace/handle/10204/10492
- [3] V. Jülch, "Comparison of electricity storage options using levelized cost of storage (LCOS) method," *Applied Energy*, vol. 183, pp. 1594–1606, 2016.

