Synthesis, photophysical and electrochemical studies of N,N-bis(3,5dimethylpyrazol-1-yl-methyl)-heterocyclic-bipyridine-thiocyanatoruthenium(II) complexes

Shadrack J. Adjogri, Peter A. Ajibade, Opeoluwa O. Oyedeji and Edson L Meyer

in

10th Renewable Energy Postgraduate Symposium (REPS)

Introduction

- Ruthenium occupies the central position of the d-block transition metal
 [1]
- It readily forms coordinate complexes with different derivatives [2].
- The basic interest in chemistry of ruthenium is due to part of the electron transfer properties exhibited by the complexes of the metal [2].

 Variation of the coordination environment around ruthenium play a key role in modulating the redox properties of the complexes [2].

Ruthenium(II) Complexes

- Ruthenium(II) complexes utilization currently takes special interests on technologies that exploit photophysical/electrochemical properties in areas such as photoredox catalysis, cellular imaging, organic-light emitting diodes and Dye-sensitized solar cells (DSSCs [1]
- The major advantages of ruthenium complexes in electrochemical applications centres on relatively low MLCT energy [2]. The MLCT involves the electron transfer from d-orbital of the metal centre to π^* orbital of ligand [3].
- Ruthenium(II) complexes with nitrogen containing heterocyclic ligands are widely studied due to their intensive ability to absorb visible and near UVlight[4].

Ruthenium(II)complexes containing N-

• Rational design and choice of N,N-bis(3,5-dimethylpyrazol-1-yl-methyl)heterocyclic ligands is to enhanced the photophysical and electrochemical properties of ruthenium(II) complexes as potential sensitizers for dye sensitized solar cells.

Dye Sensitized Solar Cell

- The high solar-to-electrical energy conversion efficiency of dye-sensitized solar cell is majorly anchored on the synthesis of efficient light capturing dye sensitizers usually transition metal complexes presenting broad and strong metal-to-ligand transfer (MLCT) absorption and incorporating functional groups [5,6].
- Major emphasis has been given to nitrogen heterocyclic ligands which are capable of complexing with different metal ion such as Ru(II) [6].

Preparation of Pyrazolic tripod Derivatives L1-L6)

Synthetic Approach: Heterocyclic ruthenium(II) complexes

 $R_2 = OCH_3$ for L2, L6 and CH₃ for L4

N,N-heterocylic ruthenium(II) complexes

C4

СООН

PF₆

University of Fort Hare

ноос

FTIR Results

 Table 1. Relevant FTIR spectroscopic data (cm⁻¹) of complexes (C1-C6)

Complexes	<i>v</i> (O-H)	v(N=C)	<i>v</i> (C=O)	v(C=S)	<i>v</i> (M-N)
C1	3452	2100	1718	771	446
C2	3487	2116	1722	776	432
C 3	3445	2118	1734	773	446
C4	3466	2117	1731	770	446
C5	3438	2106	1727	773	439
C 6	3452	2116	1731	772	432

Table 2. Absorption spectral data of complexes (C1-C6)

- Complex (C1) exhibits luminescence at 695 nm when excited at 455 nm in DMSO at 295K.
- C1 emission is ascribed to electron-withdrawing substituent of COOH on [N,N-bis(3,5dimethylpyrazol-1-ylmethyl)-heterocyclic ring which is similar to ruthenium sensitizers as reported in literature.[7]

Cyclic and Square voltammetry results of C4

University of Fort Hare

Table 3: Cyclic voltammetric data of complexes (C4-C6)

Complexes	Ru(II/III)	Eanodic/V	Ecathodic/V	$E_{1/2}/V$
C4	0.53	0.10	-0.76	-
C5	0.75	0.50	-0.97	0.13
C6	0.53	0.10	-1.10	-0.75

FORT HARE

- Six (6) new [Ru(L1-L6)(H₂dcbpy)(NCS)]⁺ heteroleptic ruthenium(II) complexes containing heterocyclic ligands synthesized
- The use of heterocyclic ligands provided electron withdrawing groups (EWG) and electron donating groups (EDG) for controlling absorption, emission wavelength and redox properties
- The broad and very high intensity MLCT absorption bands make these dyes very useful for harvesting and transforming less energetic photons thereby showing its importance for photosensitization process.
- The heterocyclic ligands together with overall structure of the complexes enhanced its photophysical and electrochemical properties

References

- 1. Coe B.J, Peers M.K, Scrutton N.S. Syntheses and electronic and optical properties of complexes of the bis (2, 2'-bipyrazyl) ruthenium unit. *Polyhedron*. 2015.16; 57-65.
- 2. Ghatak N, Chakravarty J, Bhattacharya S. Synthesis, characterization and electron transfer properties of some picolinate complexes of ruthenium. *Polyhedron*. **1995** 14:3591-3597.
- 3. Kinnunen T.J, Haukka M., Pakkanen T.A.. Alkoxycarbonyl substituted ruthenium mono (bipyridine) complexes: steric effects of the bipyridine substituents. *J. Organomet. Chem.* **2002** 15; :8-15.
- 4. Sizova OV, Ivanova N, Sizov VV, Ershov AY, Baranovski VI.
 Substituents effect on the electronic structure, spectra and photochemistry of [Ru (NH3) 5 (Py-X)] 2+ complexes. *Inorg Chim Acta*, . 2004 357 :354-60

- 5. Racal N, Vaishaly AG, Sharma H, Mathew BB. Dye sensitized solar cells: The emerging technology. *Energy and Power Engin. Serv. 2015*;*2*: 46-52.
- 6. Chryssou K, Stergiopoulos T, Falaras P. Synthesis and spectroscopic properties of a new bipyridine-bipyrazoyl (pyridine)-thiocyanato-ruthenium (II) complex. *Polyhedron*. 2002 ;21:2773-2781.
- 7. Sivakumar R, Marcelis AT, Anandan S. Synthesis and characterization of novel heteroleptic ruthenium sensitizer for nanocrystalline dye-sensitized solar cells. *J. Photochem. Photobiol. A*: *Chem.* **2009**.15;208:154–158.

Thank you for your attention ! sadjogri@ufh.ac.za

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

CENTRE FOR RENEWABLE & SUSTAINABLE ENERGY STUDIES

