Photovoltaic Module Evaluation via the Application of a Characterized Xenon Arc Lamp Solar Simulator

Julian C. NWODO

Supervisor: Prof. Edson L. MEYER Co-Supervisor: Dr. Richmore KASEKE

In

10th Renewable Energy Postgraduate Symposium (REPS)

Stellenbosch University

Outline

Introduction

Materials and Methods

Results

• Two methods are employed for the characterisation of a photovoltaic cell or module.

Introduction

- Outdoor characterisation.
- Indoor characterisation.
- The elemental aim of the solar simulator is to test PV cells or modules under laboratory conditions that are reproducible.

• Hence, a control system with an arrangement of distinct physical components was designed.

Introduction

- The control system should regulate or direct or command.
- A solar simulator of class AAB was used.

Objectives:

• To achieve solar simulator set point quicker thereby reducing temperature build up on the target area.

Aim and Objectives

- Indoor PV test.
- Monitor the operating state of the solar simulator.

Materials and Methods

System Architecture

<u>Figure 1:</u> Schematic diagram of the irradiance feedback control system

Methodology

Irradiance, Temperature & Non-Uniformity Test

• Target area 2m x 2m

<u>Figure 3:</u> Target area showing device under test

METHODOLOGY

Characterisation

5 kW Xe Arc Lamp

Target Area with Reference cell, Pyranometer and Spectroradiometer Reflector with Xe-Arc Lamp

Auto/Manual Lamp Control

Applying the Xenon-lamp solar simulator on various PV technologies

5 kW DC Power Supply

Igniter

5 kW Xe Arc Lamp

Reflector with Xe-Arc Lamp

Target Area with Reference cell and C-Si Module

IFCS

Results

Lamp Input Power and Irradiance Test

1000 Wm⁻² at 90% max current.

± 1.4% irradiance drift from set point.

Figure 5: Solar simulator operated at specific set point

Results

Irradiance and Temperature Test

Figure 6: Solar simulator operated without temperature control

Results

<u>Non-Uniformity</u>

<u>Table 1:</u> Non-Uniformity at varying irradiance set points

Power level	Current Drawn (A)	Cell surface Temperature (°C)	Non-Uniformity (%)
20 % of rated max	29	22.6	1.02
50 % of rated max	72.5	24.4	1.53
90 % of rated max	130.5	25.4	3.26

<u>Figure 7:</u> Photovoltaic PV module response

Conclusions

IRRADIANCE

1000 Wm⁻² \rightarrow 90% \rightarrow <10 s to stabilize...

Indoor Testing

1000 Wm⁻² → Manufacturers Datasheet → Match

PERFOMANCE

Achieves Set points faster,...

References

- 1. Rivola, D., Dittmann, S., Pravettoni, M., Friesen, G. and Chianese, D., 2014, June. High-speed multichannel system for solar simulator irradiance non-uniformity measurement. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th (pp. 2611-2615). IEEE. DOI: 10.1109/PVSC.2014.6925465
- Chawla, M.K. and Tech, P.E., 2018. A step by step guide to selecting the "right" Solar Simulator for your solar cell testing application. Photo Emission Tech., Inc. simulator for your solar cell testing application." http://www.photoemission.com/techpapers/A%20step%20by%20step%20guide%20to%20selecting%20 a%20Solar%20Simulator%20Ver.%203.pdf> (Retrieved 29.03.18).
- 3. Pravettoni, M., Galleano, R., Aitasalo, T., Kenny, R.P., Dunlop, E.D. and Barnham, K.W., 2010, June. From an existing large area pulsed solar simulator to a high intensity pulsed solar simulator: characterization, standard classification and first results at ESTI. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (pp. 002724-002728). IEEE. DOI: 10.1109/PVSC.2010.5616862
- Bazzi, A.M., Klein, Z., Sweeney, M., Kroeger, K., Shenoy, P. and Krein, P.T., 2011, March. Solid-state light simulator with current-mode control. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE (pp. 2047-2053). IEEE. DOI: 10.1109/APEC.2011.5744878
- Makosa, C., Meyer, E. L., Nwodo, J. C., Kaseke, R. and Taziwa, R. T. 2017. Characterization and Classification of a 5-kW Xenon Lamp Solar Simulator with an Ellipsoidal Reflector. SAIP Conference 3rd - 7th July 2017.

Thank you for your attention !

jnwodo@ufh.ac.za

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

CENTRE FOR RENEWABLE & SUSTAINABLE ENERGY STUDIES

