RECEIVER TESTING FOR A SMALL-SCALE OPEN SOLAR-THERMAL BRAYTON CYCLE

Tamryn WolffSupervisors: Dr W. G. le Roux, Prof J.P. Meyer

Clean Energy Research Group (CERG), Department of Mechanical and Aeronautical Engineering, UNIVERSITY OF PRETORIA

Background

DIRECT NORMAL IRRADIATION

Overview

- CSP technologies
 - Linear Fresnel
 - Parabolic Trough
 - Power tower
 - Parabolic dish

- Power cycles
 - Sterling
 - Rankine
 - Brayton

Power tower

Denkleiers • Leading Minds • Dikgopolo tša Dihlalefi

Solar Thermal Brayton Cycle

4

Receivers

Open Volumetric

Closed Volumetric

Longitudinal tubular

Proposed receiver

The aim of this investigation is to test the tubular receiver proposed by Dr Willem le Roux (CERG group) and determine the efficiency of said receiver and dish set-up.

Additional problems:

- South Africa needs to make use of the available DNI resource
- Rural areas need access to affordable electricity
- ☆ Efficiencies are too low
- ☆ Costs are too high
- Systems are too large

THE PROJECT

Background

- ☆ 4.8 meter diameter
- 2.18 meter focal length
- ☆ Concentration ratio: ±260 suns
- Dual-axis solar tracking system

Project Plan

- Construct solar dish receiver set-up
 - Structure and Dish
 - Receiver insulation
 - Thermocouples
 - Burner unit and gas installation
- Flux mapping (Lunar tests)
- Static/Angled receiver tests (without solar)
- Solar receiver tests
- Calculate receiver efficiency

NB: DNI and wind data during testing from Sauran and anemometer

Optical Efficiency

- Slope error
- ☆ Specularity error
- ☆ Tracking error

- Reflectance
- ☆ Spillage
- ☆ Shadowing

Flux Mapping

- ☆ Existing Methods:
 - CCD or CMOS camera
 - Radiometer
 - IR camera
 - Photographic Flux (PHLUX)

Method used: LUNAR TEST: A DSLR camera and a flat white surface

RESULTS AND DISCUSSION

Flux Mapping

Lunar testing and SolTrace (Monte Carlo ray tracing software)

Spillage due to slope error and imperfect parabola at the edge of the dish

RESULTS AND DISCUSSION

Flux Mapping

Static Testing

Burner unit used to simulate hot air inlet

Insulated receiver

Heat Losses

- Conduction ÷
- Convection Å.
- Radiation (main contributor) Å.

Efficiency

η_{receiver}

$$\Leftrightarrow \dot{Q}_{losses} = \dot{Q}_{cond} + \dot{Q}_{conv} + \dot{Q}_{rad}$$

. Q_{receiver}

Static Testing

Weld on thermocouple receiver test (no solar)

Static Testing

Weld on thermocouple readings for a burner test with gas change over

FUTURE WORK

 \mathcal{L}_{i}

- ☆ Install 45kg gas bottles
- ☆ Angled receiver tests
- Solar exposed receiver tests

ACKNOWLEDGEMENT

National Research Foundation (NRF)

Mr Kyle Dellar and team

My supervisor Dr Willem le Roux and co-supervisor Prof Josua Meyer

Solar Thermal Energy Research Group (STERG)

THANK YOU

