An Investigation into Gimbal Pose Accuracy: The Accuracy of the Gimbal Model in the Frequency Domain

Student: Michen Haller

Supervisor: Dr. Willie Smit

Co-Supervisor: Dr. Annie Bekker

Background

- Project Focus in STERG
 - Automated Drones In CSP
 - Calibrations, Inspections and Measurements

┿

• Gimbals

Background

• Gimbals

Problem Statement

- Gimbals not designed for high precision measurements
 - Relatively low frequency disturbances
- Little, or no, high frequency response data available
 - Trade secret, military research, or not done
- 1. How sensitive is the gimbal to frame disturbances? (Moving Frame)
- 2. How accurately can a gimbal measure its centre axis rotations? (Stationary Frame)
- 3. What are the effects of high frequency gimbal frame disturbances?

Objectives

Solution Plan

- How will the gimbal be tested?
 - Varied Angular Displacement and Frequency of Frame
 - Static Frame and Aiming Laser

1: MS Model Transient : Time = 0.280000 : Frame 141

Thank you

Acknowledgments:
Dr. Willie Smit
Dr. Annie Bekker
Hannes Swart

- Contact Details:
 - Email: <u>16151143@sun.ac.za</u>
- Author: Michen Haller

