

An Update on Research Activities at the Group for Solar Energy Thermodynamics

Jean Pitot

GSET Leader
Discipline of Mechanical Engineering
University of KwaZulu-Natal

STERG Symposium – 13 July 2017

Presentation Outline

- Introduction to GSET
- Broadband Radiometry
- Thermal Systems Analysis
- Concentrator Development
- The SERAFF Solar Furnace
- Future Activities

Introduction to GSET

- GSET is a small research group, with fairly limited financial and human resources
- Academic staff compliment: Jean Pitot (lecturer) and Dr Michael Brooks (senior lecturer)
- Current postgraduate student complement: two MSc Eng students
- Our research focuses on:

Broadband Radiometry

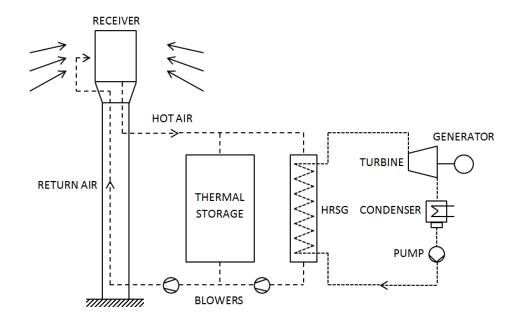
Thermal Systems
Analysis

Concentrator Development

Measurement Equipment

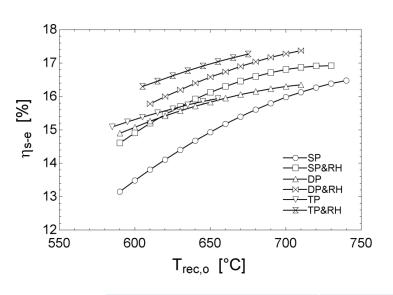
- Two active ground stations at UKZN (Howard College and Westville campuses)
- Howard College: Eppley PSPs, perforated band system, Eppley NIP, Kipp and Zonen CH1, CMP11s and CUV5 ultra violet sensor (280 to 400 nm)
- Westville: SOLYS tracker, CMP11s and CH1

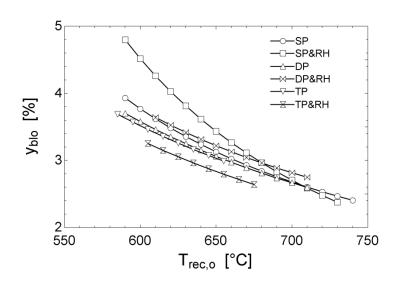
Southern African Universities Radiometric Network (SAURAN)


- Over 4 years of data now available
- GSET remains active on SAURAN steering committee

Code Name		Location	Latitude °	Longitude °	Elevation	Data Record (Years/Months)								
						Topography	2010	2011	2012	2013	2014	2015	2016	2017
<u>KZH</u>	University of KwaZulu- Natal Howard College	Durban, South Africa	-29.87098	30.97695	150 m	Roof of Desmond Clarence building	0	0	0	11	12	12	12	7
<u>KZW</u>	University of KwaZulu- Natal Westville	Durban, South Africa	-29.81694	30.94492	200 m	Roof of Physics building	0	0	0	9	12	12	12	7

Performance Modelling of an Open Volumetric Receiver CSP Plant Incorporating Rock Bed Thermal Storage




Performance Modelling of an Open Volumetric Receiver CSP Plant Incorporating Rock Bed Thermal Storage

- AIM: develop better understanding of how large OVR plants with rock bed storage perform
- Three main modelling tasks:
 - Assessing thermodynamic interaction between receiver, air distribution system and power block
 - Assessing viability of LTE assumption in modelling rock beds
 - Performance of annual plant parametric studies
- Modelling undertaken using EES and SolarPILOT

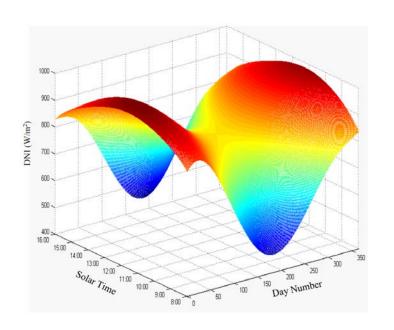
Performance Modelling of an Open Volumetric Receiver CSP Plant Incorporating Rock Bed Thermal Storage

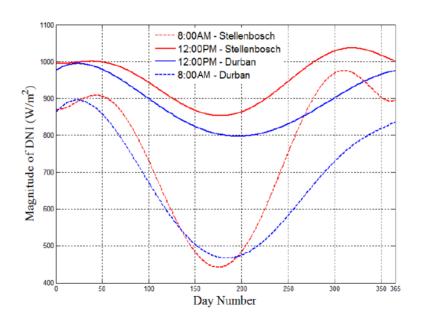
Performance Measure	LTE Model	LTNE Model	Deviation
Exergy Yield [J]	5.75E+14	5.73E+14	+0.4 %
Generation Time [h]	1055	1062	-0.7 %
Blowing Work [J]	3.42E+12	3.50E+12	-2.1 %
Simulation Time [s]	6234	19047	-67 %

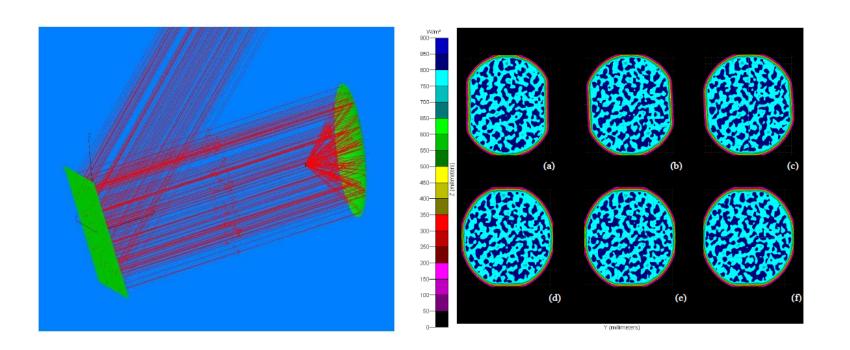
Thermofluid Performance Characterisation of Recessed-Absorber Open

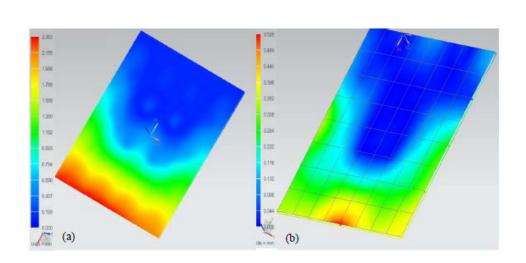
Volumetric Receivers (Mathew Jo Mathew)

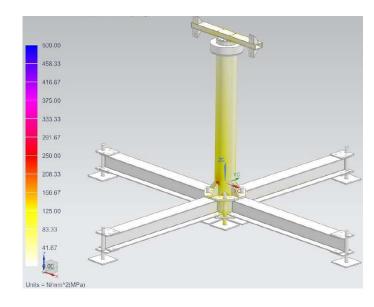
- Currently, OVR performance limited by incomplete air re-entrainment
- AIM: assess the potential for ARR improvement by recessing absorber module within CPC
- CFD-based modelling with STAR-CCM+
- Discussed in greater detail in Mathew's presentation
 later this afternoon

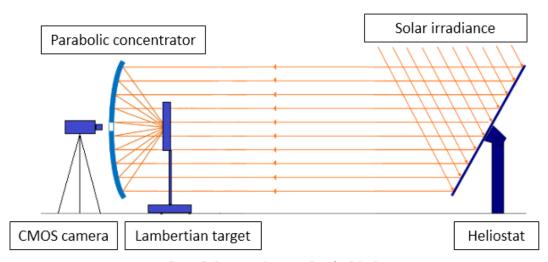

- Non-concentrating 9 m² heliostat → first piece of the SERAFF puzzle
- Azimuth: slew drive; Elevation: linear actuator
- Labview/NI control system



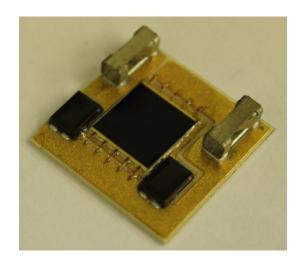

 Temporal Direct Normal Irradiance Topograph (TDT): new technique for clear sky solar resource prediction

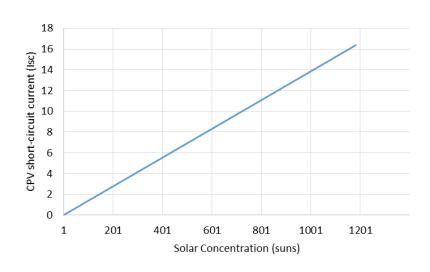


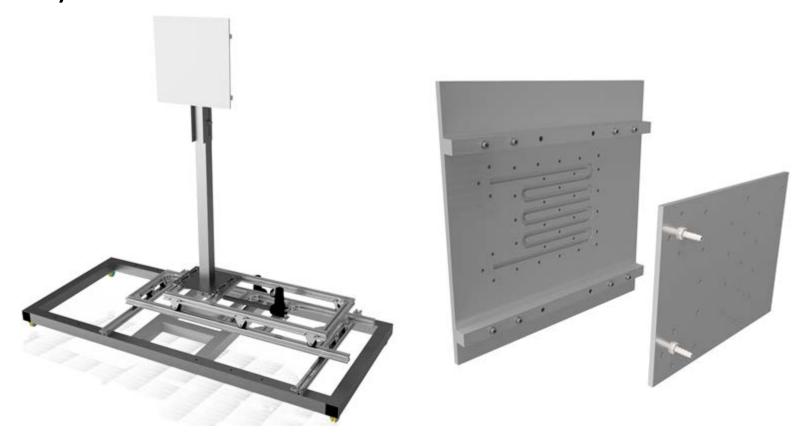

Ray-tracing for optical performance analysis


- FEA for optical deflection and survivability predictions

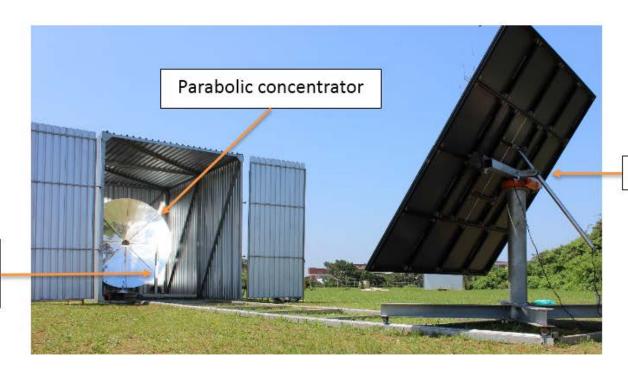
- Developed to support SERAFF operations
- Flux image generation using CMOS camera
- To evaluate: total incident radiation; max. and avg. concentrations; optical efficiency; misalignment errors







- Image calibration with concentrating triple-junction PV cell (1 to 1182 suns)
- Co-calibration with Gardon gauge



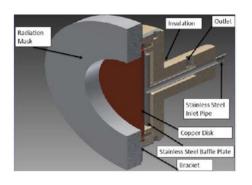
Solar Research Amplified Flux Facility (SERAFF)

- GSET's flagship project
- Current capacity: at least 4 kW; eventual capacity: at least 5 kW
- Peak flux: approx. 2 MW/m; spot size: approx. 12 cm

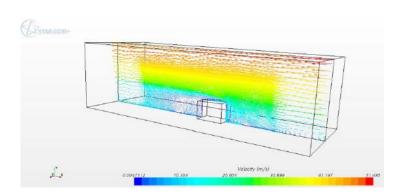
Heliostat

Test article platform

Location at Howard College Campus

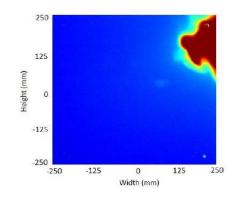

Mechanical Engineering

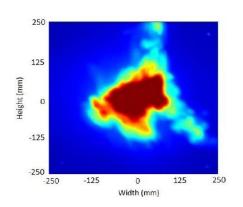
2015 FYP Developments



Solar Research Amplified Flux Facility (SERAFF)

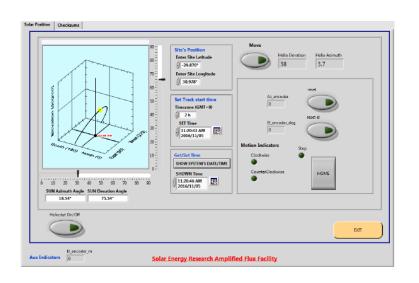
2015 FYPDevelopments





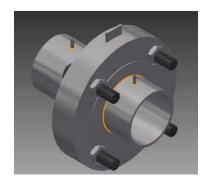


2016 FYP Developments



Solar Research Amplified Flux Facility (SERAFF)

2016 FYP Developments



Current Developments

- Open volumetric receiver test rig
- Off-grid PV power supply
- Unified DAQ&C system

Future Activities

- SERAFF: heliostat and primary concentrator upgrades; collaborative work
- Broadband Radiometry: UV resource assessment
- Thermal Systems Analysis: modelling and testing of novel OVR absorbers;
 OVR ARR enhancement; modelling of novel OVR configurations and OVR-based solarised gas turbine plants

Please join us in Durban for SASEC 2018!

Provisional Dates: 25 – 27 June 2018

