

UNIVERSITEIT STELLENBOSCH UNIVERSITY

A systematic literature review of hybrid renewable energy micro-grids in South Africa and neighbouring countries

MBALENHLE MABASO

12 JULY 2017

REPS, STELLENBOSCH UNIVERSITY

Agenda

- 1. Introduction to Micro-grids
- 2. Micro-grid Modelling Tools
- 3. Micro-grid Projects
- 4. Case Studies: Lucingweni & Tsumkwe
- 5. Emerging Issues
- 6. Conclusion

Introduction to Micro-grids

US DoE [1]:

"a group of <u>interconnected loads</u> and <u>distributed energy resources</u> within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and that connects and disconnects from such a grid to enable it to operate in both <u>grid-connected</u> or <u>'island' mode</u>"

Lower Tier of Service

Higher Tier of Service

Autonomous Basic (AB mini-grids)

Generation Sources: PV, hydro and biomass

Tier of service: Less than 24-hour power

End-users: Remote community without major commercial or industrial activity

Added value:

- Enable enhanced energy access
- Alternative to grid-extension
- Improve quality of life
- Cost savings

Autonomous Full (AF mini-grids)

Generation Sources: PV, hydro and wind

Tier of service: 24/7 power

End-users: Remote communities with major commercial or industrial requirements; industrial sites disconnected from grid

Added value:

- Alternative to expensive polluting imported fuels
- Diversification and flexibility of supply
- Cost savings

Interconnected Community (IC mini-grids)

Generation Sources: PV, wind and biomass/biogas Tier of service: High critical/interruptible End-users: Medium to large grid-connected community, such as university campus Added value:

- Community control
- Improved reliability
- Response to catastrophic events
- Cost savings

Interconnected Large Industrial (ILI mini-grids) Generation Sources: PV, wind and biomass/biogas Tier of service: Very high: Critical/uninterruptible End-users: Data centres, industrial processing or other critical uses

Added value:

- High reliability for critical loads
- Enhance environmental performance
- Resiliency

Autonomous

Source: IRENA [2, p.3]

Micro-grid Modelling Tools

Micro-grid Projects

Project Name	Project Start	Country	Project Location	Location Tuno	Specifications	Grid	Energy	Installor	Eundor	Still in	With
Project Name	Date	country	Flojett Location		specifications	Connected? 🞽	Efficiency 🗵		runder 🗸	operation	Storage? 🗵
					50 kW PV Array,						
					36 kW wind,						
					ready boards				National Energy		
Lucingweni Hybrid					and battery				Regulator, Department		
System	2004	South Africa	Eastern Cape	Rural	bank	No		Shell Solar	of Minerals and Energy	No	Yes
					10.6 kW Solar						
					array, 5kW wind						
					generators,		Gas stoves,				
Hluleka Nature					diesel		SWH, Energy				
Reserve Hybrid Mini-					generator,		saving light				
grid	2002	South Africa	Eastern Cape	Rural	battery storage	No	bulbs	Shell Solar		Yes	Yes
					750 Wp solar						
					serving 9			Specialized			
					families			Solar			
				Informal	(includes basic			Systems			
Jabula Microgrid	2016	South Africa	Cape Town	Settlement	appliances)	No		(SSS)	Zonke Energy	Yes	

Results (a)

COUNT OF PROJECT NAME BY COUNTRY 10 8 6 4 2 0 Mozambique Zimbabwe Botswana Lesotho Namibia South Africa

Results (b)

COUNT OF PROJECT NAME BY PROJECT TYPE

Case Studies

Tsumkwe Energy (Namibia) [6] and Lucingweni Project(South Africa) [7]

Case Studies

Lucingweni Project [7]			Tsumkwe Project [6]				
	• Government	support	•	Government support			
	• Inadequate of	community engagement	•	Regional council is responsible for diesel			
	Low willing	ess to pay for electricity		feedstock			
	• Lack of a me	etering system	•	Micro-grid was fitted into already existing			
	• Free electric	ity for a few months		structures			
	• Introduction	of a tariff only later	•	Adoption of a prepaid metering system			
	• Vandalism a	nd theft	•	Community already had a culture of paying fo			
				electricity			

- The adoption of energy efficient appliances
- It also sourced revenue from local businesses
- Almost no incidents of vandalism or theft

Emerging Issues

High usage of diesel being displaced by solar PV

Grant funded

Socio-economic versus technical challenges

Growing interest in the commercial and mining sectors

Emerging business models of micro-grids, even in urban informal settlements

Conclusion

- Micro-grids are vulnerable to the social conditions not apparent at utility scale
- Critical to draw from lessons learnt
- A database of micro-grid projects would be beneficial
- Growing need for engineers & energy planners to consider socio-economic context at the design stage
- Opportunities for design improvements of micro-grids (esp. storage and control systems)

THANK YOU....

References

[1] R. Hanna, M. Ghonima, J. Kleissl, G. Tynan, and D. G. Victor, "Evaluating business models for microgrids: Interactions of technology and policy," Energy Policy, vol. 103, no. January, pp. 47–61, 2017.

[2] Green Cape, "Utility-scale renewable energy sector," vol. 53, no. 9, pp. 1689–1699, 2016.

[3] IRENA, "Innovation Outlook: Renewable Mini-Grids," 2016.

[4] HOMER Energy, "Simulation", http://www.homerenergy.com, Last Accessed 11 July 2017

[5] Berkeley Lab, "DER-CAM", https://building-microgrid.lbl.gov/projects/der-cam, Last Accessed 11 July 2017

[6] Tsumkwe Energy Project, <u>http://energyfacilitymonitoring.eu/bringing-solar-power-to-tsumkwe/</u>, Last Accessed 4 June 2017

[7] A. C. Brent and D. E. Rogers, "Renewable rural electrification: Sustainability assessment of mini-hybrid off-grid technological systems in the African context," Renew. Energy, vol. 35, no. 1, pp. 257–265, 2010.