

CENTRE FOR RENEWABLE &

SIMPLE PAYBACK EVALUATION UPON REPLACEMENT OF A DOMESTIC TRADITIONAL WITH A RENEWABLE SPACE CONDITIONING DEVICE.

University of Fort Hare Together in Excellence

University of Fort Hare

STUDENT:

BANTAN MAFOR GLORY

SUPERVISOR:

MICHAEL SIMON

CO-SUPERVISOR:

STEPHEN L TANGWE

- Introduction
- Aim and Objectives
- Research Methodology
- Results
- Conclusion

Introduction – Global Risks Landscape

2016

Introduction cont...

Figure 2: Immediate global risks originating from climate change

University of Fort Hare

Introduction cont...

University of Fort Hare

Figure 3: Climate change cycle for space conditioning

Increase the awareness on the potential energy savings and long term benefits embedded in replacing a fan and a heater with a split-type AC in a residential sector

This will be achieved by

- Monitoring the energy consumption and performance of the AC system during both winter and summer
- Deducing the performance of the traditional space conditioning devices from that of the AC
- These monitored performances are then compared and the difference computed which is the energy savings.

Research Methodology

- ✤ The AC, heater and fan for 8.43x4.25x3.00m³ house was sized
- The daily consumption of the fan and heater was deduced from that of the AC using AC heating and cooling COP (COP_h and COP_c)

University of Fort Hare

Eath = Eath × COPh EatF = Eate × COPc Esav = Efh - Eac Where

 $E_{dH} = daily \text{ heater energy}$ $E_{dF} = daily \text{ fan energy}$ $E_{dh} = daily \text{ AC heating energy}$ $E_{dc} = daily \text{ AC cooling energy}$ $E_{sav} = total \text{ yearly energy savings}$ $E_{fh} = total \text{ yearly fan and heater consumption}$

 E_{ac} = total yearly AC consumption

- \clubsuit In the AC was installed temperature sensors and energy meters as shown in fig 2
- Data was logged in 5mins interval for a period of 6months (May December) and later integrated to daily average in 30mins interval
- ✤ For the experiment, the AC ran daily for a monitoring interval of 07:00 to 22:00
- \clubsuit This is the assumed time interval for room activities
- ✤ The heating and cooling set temperature was 27°C and 25°C respectively

Research Methodology cont...

Out door Unit

Indoor Unit

Figure 5: Photo of DAS

University of Fort Hare

Table 1: Per kWh values for emission and water consumption

Parameter	H ₂ O (l)	$CO_2 (kg)$	NO _x (kg)	SO _x (kg)
Qty/kWh	1.41	0.92	0.0042	0.0083

Results – Winter Performance

- Ambient temperature for an average winter day is between 8°C and 22°C.
- The daily heating demand ranges from 0.45kW to 0.7kW.

Figure 6: Average winter day ambient temperature and demand profile

University of Fort Hare

11

CENTRE FOR RENEWAB

Results – Summer Performance

- ✤ Ambient temperature for an average summer day is between 12 and 32°C
- ✤ Average day demand ranges from about 0.08kW to 0.8kW.

Figure 7: Average summer day ambient temperature and demand profile

University of Fort Hare

12

CENTRE FOR RENEW

Results – Energy Computations

• Daily average COP_{h} and COPc were respectively 2.1 and 2.26

Table 2: Summary of heating and cooling energy consumption

Duration	Traditional Device	e Energy (kWh)	HVAC Energy (kWh)		
Duration	Heating	Cooling	Heating	Cooling	
Daily	17.58	2.58	8.37	1.14	
Months with 30 days	1,054.80	227.04	502.20	100.32	
Months with 31 days	1,634.94	319.92	778.41	141.36	
Yearly Heating Total	2,689.74	546.96	1,280.61	241.68	

• Yearly winter E_{sav} is 1,409.13kWh (52.4%) and for a Eskom flat rate of R1.30, it is

equivalent to R1,831.9

✤ For summer, yearly energy saving is 305.28kWh (55.8%) equivalent to R396.9

Results – H₂O & CO₂ Emission Reduction

FORT HARI

14 CENTRE FOR RENEWABLE

SUSTAINABLE ENERGY STU

Figure 8: H₂O and CO₂ reduction bar chart for both devices

University of Fort Hare

Results – SO_x and NO_x Reduction

University of Fort Hare

ORT HARI

 Table 3: Yearly GHGs, CO2 emission and water consumption for entire space conditioning

	$H_2O(l)$	CO ₂ (kg)	NO _x (kg)	SO _x (kg)
Summer Reduction	1,986.80	1,296.40	5.91	11.70
Winter Reduction	430.44	280.85	1.29	2.53
Annual Reduction	2,417.24	1,577.25	7.20	14.23

- ✤ 52.4% and 55.8% reduction in GHG emission and water utilisation due to the replacement in winter and summer respectively
- Total yearly energy savings is 1,714.41kWh (52.9%), with monetary equivalence of R2,228.9 per annum when a split-type AC represents a heater and fan
- The payback of the system was computed to be about 4.9years as long as simple maintenance of constantly cleaning the filters is done monthly

University of Fort Hard

Replacing heaters and fans with a split-type AC in the residential sector significantly reduces cost of energy consumption, production and national and global environmental hazards.

Though little, it will contribute to reducing the annual 2% water consumption by Eskom so as to combat water crisis

More savings will be achieved supposing the analysis is carried out over a 24hour period

It is recommended that a 24hour cooling and heating analysis be done to have a clearer picture on the total daily consumption and payback period

	_	
~~		
1		

Acknowledgement

TECHNOLOGY AND HUMAN RESOURCES FOR INDUSTRY PROGRAMME

an initiative of the dti

THANK YOU For your kind attention!!!

