

### Analytical Evaluation of the Energy Losses During the Duty Cycle of a Residential Heat Pump water Heater

YONGOUA Nana Joel MASTERS OF PHYSICS (Research)

SUPERVISOR: MICHAEL Simon CO-SPERVISOR: TANGWE Loh Stephen

FORT HARE INSTITUTE OF TECHNOLOGY



FHIT Renewable energy research



### OUTLINE

✤ Background

Problem statement

Objectives

Research methodology

Results and discussion









 $\mathcal{Q}$ 

# BACKGROUND





Source: Eskom Integrated Demand Management, 2013

- Heat Pump Rebate Program:
  - 10% electricity reduction in the residential sector
  - Mass roll out of 65,580 residential ASHP water heater units together in excellence

3000 3 -0

## BACKGROUND

### **ASHP** water heater:

- ASHP water are electromechanical devices used to transfer heat from surrounding air to water (VCRC cycle).
- can save up to 67% of energy consumption compared to geysers for the same heating load



## **PROBLEM STATEMENT**



- Performance of ASHP water depends on two major input variable:
  - Ambient temperature and relative humidity (Time of day/Time of Use)
  - Hot water usage pattern





### **OBJECTIVE**



- Monitor the performance of a split-type residential ASHP water heater during summer and winter
  - Coefficient of Performance
  - Thermal performance of heat exchanger
- Establish the influence of ambient conditions
- Establish the influence of the hot water draw patterns





### METHODOLOGY



Figure 1: Installed Data Acquisition System on Heat Exchangers

- 1.3kW split type ASHP water heater retrofitting a 150l geyser with R417A as the primary fluid
- Equipment:
  - Power meter
  - 6 temperature sensors
  - Ambient temperature/Relative Humidity
  - Flow meter
  - U-30 NRC data logger
- Fluids all flow in one dimension. The tubes geometry was considered long, thin, uniform, horizontal and a uniform temperature distribution along their surfaces



## METHODOLOGY

#### Table 1: Compressor Specifications

| Designation             |  |
|-------------------------|--|
| Compressor Type         |  |
| Compressor Displacement |  |
| Refrigerant Type        |  |
| Electric Source         |  |
| Condenser Type          |  |

- Controlled water draws
  - Morning: 06:00-09:00am
  - Afternoon: 12:00-14:00pm
  - Evening: 17:00-20:00pm
- Repeated sequential draws
  - 150 liters
  - 100 liters
  - 50 liters

#### Specifications

Rotary Compressor 80.4 cc/rev 417A 1¢ 230V Shell-and-tube type

- Heat Exchanger parameters
  - Evaporator heat gain
  - Condenser rejected heat
  - Heat absorbed by water





together in excellence

Ambient Temperature/°C 20 15 10. 2 4 6 8 10 12 14 16 18 Number of Observation Figure 2: Summer Ambient **Temperature Profiles** 

40

35

30

Figure 3: Winter Ambient **Temperature Profiles** 

8

6

Number of Observation

2

- Ambient temperature highest in the afternoon for both seasons
  - Summer: Maximum of 40°C and minimum of 15°C
  - Winter: Maximum of 30°C and minimum of 3°C





10

12

FORT HA Institute of Technolog



Figure 4: Summer average COP Profile against Volume of Water Heated up

Figure 5: Winter average COP Profile against Volume of Water Heated up

Morning

Afternoon

vening

22.64°C 16.09°C

100L

12.63°C

22.97°C

150L

16.21°C

14.74°C

3.5

3

2.5

2

1.5

1

0.5

0

Avergae COP

12.52°C

12.64°C

21.0°C

50L

#### Table 2: COP Variation with Volume of Hot Water and Time of Use

|                                | СОР           |           |         |         |           |         |  |  |
|--------------------------------|---------------|-----------|---------|---------|-----------|---------|--|--|
| Volume of Water Heated/ Litres |               | Summer    |         | Winter  |           |         |  |  |
|                                | Morning       | Afternoon | Evening | Morning | Afternoon | Evening |  |  |
| 150                            | 3.63251       | 3.54005   | 3.28997 | 2.82784 | 3.08308   | 2.90442 |  |  |
| 100                            | 3.24688       | 3.22278   | 3.01557 | 2.49217 | 2.53084   | 2.57326 |  |  |
| 50                             | 3.35890       | 2.82363   | 3.41383 | 3.14491 | 2.20786   | 2.78749 |  |  |
|                                | rner in excel | lence     |         |         | 1.0       |         |  |  |



#### REPS 2017 (87/12/2017)

Institute





REPS 2017 (87/12/2017)

FORT HARE Institute of Technology



FORT HARE Institute of Technology

12



 Table 3: Condenser Average Thermal Performance Parameters

| Average Thermal               | Summer  |           |         | Winter  |           |         |  |
|-------------------------------|---------|-----------|---------|---------|-----------|---------|--|
| Energies                      | Morning | Afternoon | Evening | Morning | Afternoon | Evening |  |
| Rejected Heat/kWh             | 0.43675 | 0.52936   | 0.48451 | 0.34360 | 0.50139   | 0.39883 |  |
| Heat Absorbed by<br>Water/kWh | 0.30397 | 0.26899   | 0.29619 | 0.25389 | 0.23844   | 0.24721 |  |
| Heat Loss/kWh                 | 0.14614 | 0.26231   | 0.19137 | 0.10260 | 0.26324   | 0.15286 |  |



together in excellence



REPS 2017 (87/12/2017)

### CONCLUSION

- Only about 75-79% of heat is effectively harnessed by water during heating up cycle
- Performance of heat exchanger is best in the morning and lowest in the afternoon
- High COP are be attained during huge hot water draws
- For a fixed pattern, higher COP are attained during the morning heating up cycle





FORT HARE Institute of Technology

[1] T. Skinner (2012). Eskom: An overview of energy efficiency and demand side management in South Africa. Available: url

[2] University of Pretoria, "Measurement and verification guideline: Residential heat pump rebate program. Eskom, Pretoria. 2011

[3] E. Orhan, S. Savas and I. Yalcin, "Operation of compressor and electronic expansion valve via different controllers" P.E. Dadios (Ed): InTech, 2012, pp. 223-237

[4] K. Vinther, C. L. Hillerup, S. E. Baasch and H. Rasmussen "Evaporator superheat control with one temperature sensor using qualitative system knowledge". Amer contrl conf. 2012, pp 374-379.

[5] R. K. Green, N. Ahmadi, J. Claesson and D. R. Wilson "Microprocessor based control system for heat pumps" New ways to save energy (Ed). Netherlands. 1980, pp 154-163





We are grateful to acknowledge the financial supports from Eskom and Fort Hare Institute of Technology, University of Fort Hare in this research in a bid to purchase our data acquisition system and the ASHP water heater system.







## THANK YOU



