Confocal Raman Characterization of Sputter coated TiO₂ Nanotubes on Functional Substrates

Simcelile Zinya (201210029)

Supervisor: Co-supervisor: Co-supervisor: Prof. Edson L. Meyer Dr. Raymond T. Taziwa Dr. David M. Katwire

University of Fort Hare Together in Excellence

July 2017

Outline

University of Fort Hare Together in Excellence

- Introduction
- Background
- Aim & Objectives
- Methodology
 - Anodization Technique
 - Characterization
- **Results and Discussion**
 - Scanning Electron Microscopy (SEM)
 - X-Ray Diffraction (XRD)
 - Confocal Raman Spectroscopy (CRS)
 - Large Area Scan (LAS)
 - Depth Profiling (DP)
- Conclusion
- o Acknowledgements

Introduction

• Energy demand has intensified research on renewable energy sources.

• Efforts have been devoted to develop high efficient solar cell devices.

• Dye sensitized solar cells (DSSCs) are deemed as the most promising candidates, which commonly use TiO_2 -NPs as photo-anode.

• Random connections in TiO_2 -NPs, bring about charge recombination.

- TNTs-FS may stimulate DSSCs due to vectorial charge transport and charge collection efficiencies.
- Complexity in fabricating highly conductive thin film, limit the application of TNTs in DSSCs.

• This study focuses on synthesis and CRS characterization of TNTs on functional substrate.

• Hence, it will allow a more qualitative study and understanding of TNTs structural properties.

- o Aim
 - Synthesis of TNTs on FTO glass substrate using electro anodization technique and CRS characterization of TNTs.
- **Objectives**
 - To evaluate the structural and morphological properties of TNT annealed at different temperatures using SEM and XRD
 - To evaluate the structural phase distribution of TNT using Confocal Raman Spectroscopy through Large Area Scans and Depth profiling.

Methodology

RF SPUTTERING PROCESS

Experimental setup

Electro-anodization

Reactions at anode:

- 1. $Ti \rightarrow Ti^{+4} + 4e^{-1}$
- 2. $Ti^{+4} + 2H_2O \rightarrow TiO_{2+}4H^+$

3.
$$\operatorname{TiO}_{2} + 4\mathrm{H}^{+} + 6\mathrm{F}^{-} \rightarrow$$

 $[\operatorname{TiF}_{6}]^{-2} + 2\mathrm{H}_{2}\mathrm{O}$

 Anodization of Ti occurs as a result of the competition between oxide formation and chemical dissolution of the oxide by F⁻.

Methodology

Characterization techniques

- The following techniques were used to determine the structural and morphological properties TNTs grown on FTO glass substrate.
 - Scanning Electron Microscopy
 - X-ray Diffraction
 - Confocal Raman Spectroscopy
 - Large area scan
 - Depth profiling

SEM micrographs have revealed regular TNTs covered by barrier oxide layer.
Pore diameter of TNTs are in the range of 130-155 nm.

- o Well orientated surface morphology of TNTs on FTO glass substrate.
- o Increased TNT inner diameter size (150- 170 nm).

- Cross sectional view shows smooth & well aligned TNTs.
- o Increase in temperature results in greatly enhanced morphology of TNTs.

- SEM revealed orientated surface morphology of TNTs grown on FTO glass substrate.
- No morphology disruption or deformation observed of TNTs at 650 °C.

Results : XRD

LAS (XY) TNT 350 °C

LAS (XY) TNT 450 °C

Depth (XZ) TNT 450 °C

Depth (XZ) TNT 550 °C

- $\circ~$ TNT arrays with a thickness of $\pm10~\mu m$ and a pore diameter range 85-170~nm were successfully grown on transparent conductive FTO substrates by anodizing the sputtered Ti films.
- \circ SEM micrographs show the regular morphology with no disruption or deformation of TNTs on FTO substrate even at elevated temperature (550 °C & 650 °C).
- CRS analysis (LAS & Depth) & XRD confirmed the presence of Anatase TNTs on FTO glass substrate with increase in temperature resulting in high peaks intensities, thus high structural phase maturity.
- The enhanced morphology & presence of only Anatase phase TNTs make these substrates suitable for DSSCs.

Acknowledgements

- I would like to thank God almighty for the gift of life and wisdom.
- My supervisors Prof E.L Meyer, Dr. R.T Taziwa & Dr. D.M Katwire for their guidance and support in this research.
- Department of Chemistry and Fort Hare Institute of Technology(FHIT) for providing me with the facilities required in this research.

THANK YOU ALL

2

