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Example

(a) Best evolved design for antenna for original requirements ST5-3-10
(b) Best evolved design for antenna for revised requirements ST5-33-142-7

“The 2006 NASA ST5 spacecraft antenna. This complicated shape was found by an evolutionary computer design program to 
create the best radiation pattern.”

Source:  Hornby, Gregory S.; Al Globus; Derek S. Linden; Jason D. Lohn (September 2006). "Automated antenna design with evolutionary 
algorithms" (PDF). American Institute of Aeronautics and Astronautics. Retrieved 2012-02-19.



Introduction to Genetic Algorithms

Evolutionary algorithm  Evolutionary algorithm  
Based upon the biological process of evolution of genetic materialBased upon the biological process of evolution of genetic material

Pro’s:Pro’s:
Parallel interacting solutionsParallel interacting solutions

Increased probability of finding global minimum of error (compared to classical approaches)Increased probability of finding global minimum of error (compared to classical approaches)

Con’s:Con’s:
Computationally expensiveComputationally expensive

Partitioning of dataPartitioning of data
Training setTraining set

Customization for case-specific problems Customization for case-specific problems 

Unsuitable for simple problemsUnsuitable for simple problems

Validation setValidation set



Introduction: Terminology

Training SetTraining Set
The set of data used to train the model to the data (determine parameter values) The set of data used to train the model to the data (determine parameter values) 

Validation SetValidation Set
The set of data used to validate the optimized parameter values for the applied modelThe set of data used to validate the optimized parameter values for the applied model

Test of over specificationTest of over specification

GenesGenes
In the case of this GA, the parameter values for the modelIn the case of this GA, the parameter values for the model

IndividualsIndividuals
The set of parameters of a proposed solutionThe set of parameters of a proposed solution



Introduction: Terminology

Fitness FunctionFitness Function
The function used to test the fitness of an individual, or how well the applied parameter values performThe function used to test the fitness of an individual, or how well the applied parameter values perform

DiversityDiversity
The variety of the population’s parametersThe variety of the population’s parameters

Breeding SetBreeding Set
The set used in the crossover process to generate the new generationThe set used in the crossover process to generate the new generation

New GenerationNew Generation
The set used in the next iteration of the GAThe set used in the next iteration of the GA
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Applied Model

Diode 1: SRH-diode

Diode 2: “Diode-like” shunt

Shunt: Alternate current pathway
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Current Model: Two Diode

•



Parameter interpretation

Dark saturation current of PN junction

Dark saturation current of ”Diode-like” shunt

Series resistance

Shunt resistance

Diode 1 ideality factor

Diode 2 ideality factor

Current Model: Two Diode



Results: Cleaved Sample

Diode 1 Saturation Current (A) 2.16633E-07
Diode 2 Saturation Current (A) 6.96184E-05
Diode 1 Ideality Factor 1.662
Diode 2 Ideality Factor 3.538
Series Resistance (Ω) 0.229
Shunt Resistance (Ω) 276.696



Results: Laser Scribed Sample

Parameter Mean Standard Deviation (Mean) Weighted Mean
Standard Deviation 
(Weighted Mean)

I01 (A) 2.9204E-07 9.0047E-08 3.0093E-07 8.5888E-08
I02 (A) 4.6706E-06 2.3242E-06 4.6479E-06 2.2050E-06
n1 1.8361264 0.04794 1.84068 0.04571
n2 6.6254083 1.11477 6.61614 1.05760
RSE(Ω) 0.1484973 0.00251 0.14829 0.00239
RSH (Ω) 38.483938 3.03977 38.76190 2.89714



Results: Cleaved Sample



Results: Laser Scribed Sample



Proposed Model

Diode 1: SRH-diode

Diode 2: “Diode-like” shunt

Shunt: Alternate current pathway

Breakdown diode 1: Type I breakdown – Pre-Breakdown

Breakdown diode 2: Type II breakdown – Trap assisted tunnelling

Breakdown diode 3: Type III breakdown – Avalanche breakdown

Five-Diode ModelFive-Diode Model



Current Model: Five Diode

•



Parameter interpretation

Dark saturation current of PN junction

Dark saturation current of ”Diode-like” shunt

Series resistance

Shunt resistance

Diode 1 ideality factor

Diode 2 ideality factor

Dark Saturation current breakdown diode 1

Dark Saturation current breakdown diode 2

Dark Saturation current breakdown diode 3

Breakdown diode 1: ideality factor

Breakdown diode 2: ideality factor

Breakdown diode 3: ideality factor

Breakdown voltage – breakdown diode 1

Breakdown voltage – breakdown diode 2

Breakdown voltage – breakdown diode 3

Proposed Model: Five Diode



Conclusion

• Forward Bias
• Parameters of a mc-Si solar cells can be optimized using an Genetic Algorithm.

• Bulk response: Shockley-Reed-Hall model of recombination mechanism.

• Secondary diode response: likely due to defect recombination mechanisms.

• The remainder of the response is due to the contribution of the shunt current.

• Reverse Bias
• Two-diode module is not appropriate

• Proposed five-diode model

• Pre-breakdown

• IFE- through trap assisted tunneling

• Avalanche breakdown
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