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The SUNDISC cycle

• high cycle efficiency
• low co-firing rates
• ‘baseload’ characteristics

• cost-effective rock-bed TESS
• high capacity factor of 

pressurized receiver system
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The HPAR concept

• tubular metallic absorber
– Tout,max ≈ 800 °C

• ‘macro-volumetric’ effect
• dual-cooling of absorber
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Flow path SOLGATE receiver 
system (Buck, 2003)
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Boundary conditions for HPAR system (5 MWe GT)

• �̇�𝑚press. air = 20.5 kg/s
• pin = 14.7 bar
• Tin = 400 °C
• Tout = 800 °C
• �̇�𝑄press. air = 9 MWt

• Ttube,max = 950 °C
• ∆pHPAR,max = 100 mbar
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Optics – Modeling

Photo of Sierra SunTower (adapted from Schell, 2011)

Visualization of hit points from 
HPAR ray tracing simulation
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Optics – Findings

• flux distribution greatly 
influenced by tube layout
– angular offset φ0

– distance ∆r / ∆φ
– receiver tilt
– wall design/properties
– (solar field/sun position!)

flux penetration for differing angular offset between rows ‘2’ and ‘3’

φn,0
φm,0

∆rn

∆φ
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Thermal radiation – Modeling

Assumptions:
• infinitely long tubes
• same T-profile per row
• for radiation: tube has binary T-profile (front/back)

More detailed thermal radiation model should be applied (see 
Section ‘Outlook’)
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Flow in tubes – Modeling

• Gnielinski correlation enhanced for circumferentially changing 
flux after Reynolds (1963) and Gärtner et al. (1974)

• chosen: Di = 25 mm / Ltube = 2 m /
nrows = 10 (in series)

-> Umean = 15 m/s
-> Remean = 40 000
-> �̇�𝑚max = 0.03 kg/s (per flow path/column)
-> Numean = 83 / hmean = 30 W/(m2 K)
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Flow in tubes – Findings
• serial flow path leads to 

low flow velocity and 
heat transfer

• �̇�𝑄Re = 1.11 MWt
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Flow in tubes – Double flow path
• partially parallel flow 

paths appears more 
favorable

• however, larger 
temperature difference 
occur between tube and 
air for higher air velocity

• �̇�𝑄Re = 3.49 MWt
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Flow in tubes – Heat transfer enhancement (HTE)

• temperature difference between 
absorber (front) and air can be 
lowered by increasing heat 
transfer through HTEs at the 
cost of higher friction factors

• Chen et al. (2001) recommend 
dimples, Uhlig et al. (2015) 
tested corrugated tubes

• �̇�𝑄Re = 4.13 MWt
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Flow around tubes – Modeling

• so far heat transfer 
modeled as flow around 
individual tubes only

• more detailed (3-D) model 
will be build in CFD

• For Umean,o = 4 m/s
– Numean,o = 20
– ∆Tair,o = 35 °C

• For Umean,o = 0.4 m/s
– Numean,o = 6.3
– ∆Tair,o = 102 °C

• wanted: ∆Tair,o > 400 °C
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Flow around tubes – Findings

• heat transfer in tube bundle too poor to heat up 
considerable amount of air to desired temperature

• at lower velocities, wind will be problematic
• more elaborate modeling necessary but not expected to 

change the heat transfer to the needed extend
• external HTE or additional volumetric receivers at the inner 

wall are conceivable
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• A CFD model will be created to conduct more detailed 
simulations of thermal radiation, heat transfer under 
circumferentially inconstant flux and heat transfer from the 
tube bundle to the unpressurized air stream

• additionally to the basic layout, the following enhancements 
will be investigated:
– external HTEs
– quartz glass inserts for radiation distribution and flow 

improvement
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