

The Feasibility of Solar Thermal Process Heat for the Sugarcane Industry in South Africa

Hendri Beukes, Dr. Stefan Hess

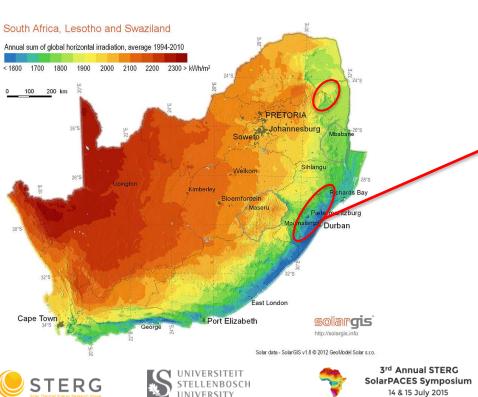
Solar Thermal Energy Research Group (STERG), University of Stellenbosch

3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Agenda

Overview

- Overview of the S.A. Sugar Industry
- Raw Sugar Production
- Drivers of Innovation
- SPH Technology & Low Hanging Fruit
- Potential of SPH Integration
- Expected Results



Location

concentrating.sun.ac.za

Stellenbosch, South Africa

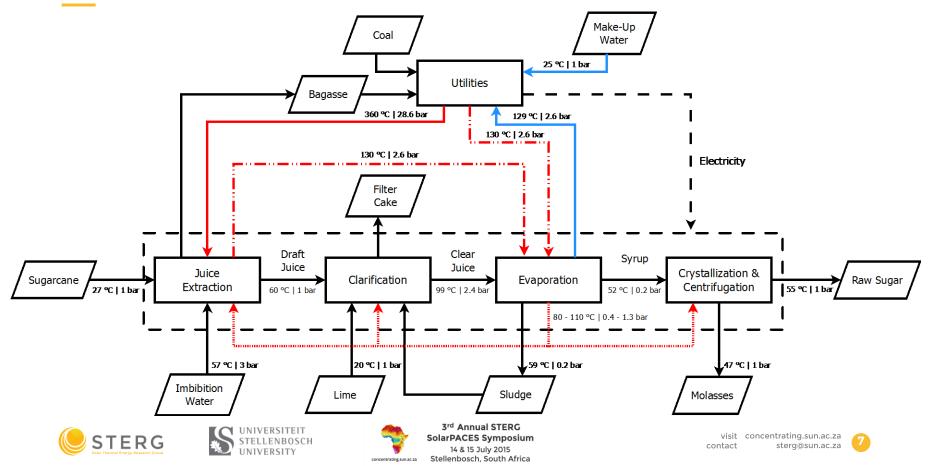
 $\langle \rangle$

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

 $\langle \rangle \rangle$

Overview

Location:	KZN & Mpumalanga	
Production:	> 2m tons/a	(20m tons cane)
Season:	March - December	
Contribution:	R12b per year	
Employment:	79 000 12 750	
Sugar Milling:	14 Raw Sugar Factories	
Market:	Highly Regulated Prices	
SMRI:	Profitability, Efficiency & Innovation	



 $\langle O \rangle$

 $\langle \rangle$

Drivers of Innovation

Economic Pressure: Low Prices, Rising Input & Operational Costs

- \rightarrow Reduce Operational Costs
 - Reduce Coal Consumption
- \rightarrow Explore Alternative Income Streams
 - Bagasse By-Products
 - Bio-Ethanol
 - Electricity Cogeneration

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

concentrating st

Technology Characteristics

Temperatures: Pressure: Integration: Power and gain: Potential Gain: System size: 25 - 450 °C Up to 40 bar Supply Level / Process Level 700 W_p/m² peak power Up to 1 MWh/m² per annum No technical limit (Area, Capital)

Fresnel Collector

Parabolic Trough Collector

Central Tower Receiver

Flat-Plate Collectors

Evacuated Tube Collectors

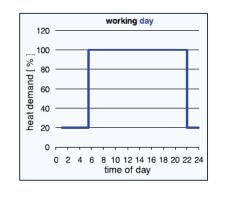
Stationary Concentrating Collector

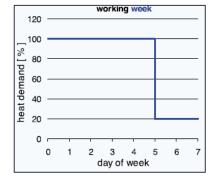
3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

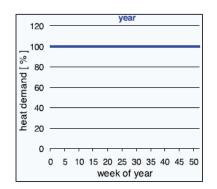
visit concentrating.sun.ac.za contact sterg@sun.ac.za

Potential for the Sugar Industry

- Objective:Identify & Assess Suitable SPH Integration PointsMethodology:1. Develop a flow diagram of a generic sugar mill
 - 2. Analyse the energy consumption
 - 3. Identify potential SPH integration points
 - 4. Assess & rank the integration points
 - 5. Develop concept designs
 - 6. Estimate the potential solar gains
 - 7. Assess the techno-economic feasibility






 $\langle \rangle \rangle$

Low Hanging Fruits

- Low Process (Return) Temperature
- High Temperature Lift
- High & Constant Heat Demand
- Demand Concurs with High Irradiance

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa $\langle \rangle$

Solar Process Heat Integration $\langle \rangle$ Let-Down Make-Up Valve Coal Water Live Exhaust Steam Steam **Turbo-Alternators** Boiler 360 °C 130 °C 28.6 bar 2.6 bar Prime Movers Evaporator 1 Cane Condensate Raw **Boiling House** Clarification Drying Diffuser ₽ **Evaporator 2** Sugar Bagasse Vapour 1 Vapour 2 Vapour 3 Evaporator 3 120 °C 110 ℃ 95 °C 2 bar 1.4 bar 0.8 bar Evaporator 4 3rd Annual STERG STERG visit concentrating.sun.ac.za SolarPACES Symposium sterg@sun.ac.za contact

14 & 15 July 2015 Stellenbosch, South Africa

concentrating.sun.ac.za

UNIVERSITY

Entry Barriers

- Low Cost of Energy:
- Heat Distribution:
- Seasonality:
- Relatively Low Irradiation:
- Area Requirements:

Bagasse Exhaust, Vapour March – December 2000 kWh/m² Limited Area

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

60

 $\langle \rangle$

Potential Integration Points

Heat Sink	Fuel / Heat Source	Process Temperature	Temperature Lift	Mean Load
Live Steam Injection	Bagasse & Coal	360 °C	N/A	90 MW
Feed Water Pre-Heating	Bagasse & Coal	129 °C	230 °C	75 MW
Make-Up Water Pre-Heating	Bagasse & Coal	25 °C	335 °C	N/A
Evaporation	Exhaust Steam	114 °C	7 °C	58 MW
Clear Juice HEX	Exhaust Steam	100 °C	14 °C	4 MW
Sugar Drying	Exhaust Steam	25 °C	55 °C	0,6 MW
Bagasse Drying	Bagasse & Coal	72 °C	N/A	N/A
		3rd Annual STERG		

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Thank You

ACKNOWLEDGEMENTS:

Hess, S. & Oliva, A. 2010. *Solar Process Heat Generation: Guide to Solar Thermal System Design for Selected Industrial Processes.* Linz.

Muster, B., Hassine, I. Ben, Helmke, A., Hess, S., Krummenacher, P., Schmitt, B. & Schnitzer, H. 2015. *Solar process heat for production and advanced applications*.

PVGIS (c) European Communities, 2001-2012

Starzak, M. & Zizhou, N. 2015. *Biorefinery Techno-Economic Modelling: Sugar Mill and Ethanol Distillery Process.* Durban.

CONTACT DETAILS:

H.T. Beukes Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za