

Sand, Sun and Solar Power: A review of the environmental impacts of Concentrating Solar Power

The South African landscape

Justine Rudman

Paul Gauché & Prof Karen Esler

Renewable Energy Postgraduate Symposium

14 July 2015

An initial review of CSP environmental impact in SA

- Introduction
- CSP's value in SA
- Study area
- Impact assessment approaches
- Scope of direct impact assessment
- Conclusion
- Acknowledgements

Introduction

Energy in South Africa

- Diversification of SA electricity system needed and being implemented through REIPPPP
- Long term plan- and policy development (2003)
- Integrated Resource Plan (IRP) 2010 & IRP Draft Update 2013
- Release of final IEP and IRP
 updates unsure

Technology option	IRP 2010 (MW)	Base Case (MW)
Existing Coal	34746	36230
New Coal	6250	2450
CCGT	2370	3550
OCGT / Gas Engines	7330	7680
Hydro Imports	4109	3000
Hydro Domestic	700	690
PS (incl Imports)	2912	2900
Nuclear	11400	6660
DV(8400	0770
CSP	1200	3300
vvina	9200	4300
Other	915	640
TOTAL	89532	81350

Introduction

REIPPPP

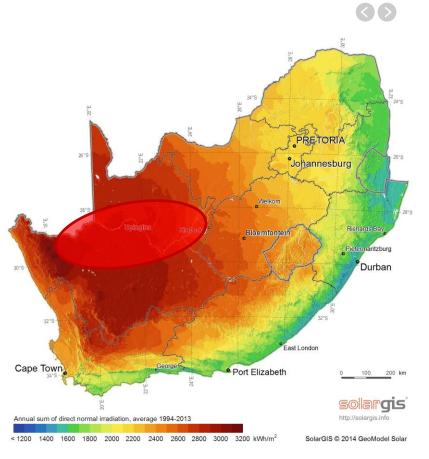
- Total RE allocation increased to 6525 MW in REIPPPP
- 1.6GW of connected RE capacity had R0.8 billion benefit to the economy (wind & solar)
- Scope for improving social benefits of REIPPPP

Technology	Total (MW)	Allocation remaining (MW)
Wind	2660	660
PV	1938	626
CSP	600	0
Small Hydro	19	116
Biomass	16	19
Biogas	0	60
Landfill	18	7
Total	5037	1488

Concentrating solar power

Value in South Africa

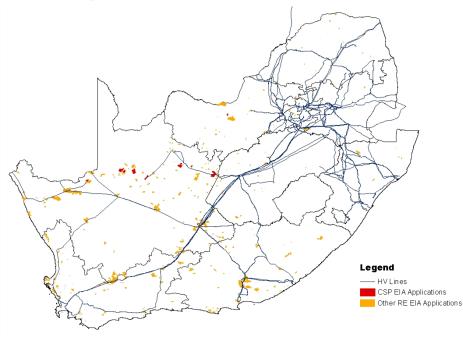
- SA especially good resource (>2900 kWh/m²)
- Potential to supply base-load and in peak demand
- Roughly only a fifth of CSP capacity allocated in IRP Update has been committed
- Only 100 MW in operation

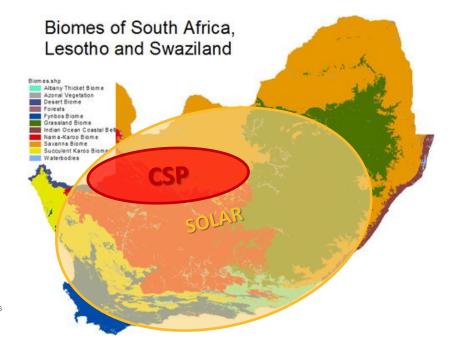


Study area

Resource distribution

- 3300 MW can have footprint of: 6666 – 435 138 ha
- Location of transmission infrastructure and water resources also limitation
- Thus have impact on land: <u>direct, indirect, beneficial</u> & <u>adverse</u>





Study area

Impacts

Impact: "The effective action of one thing or person upon another; the effect of such action; influence; impression."

Study area

Description

Description				
				grant and a state of the state
		Nama-Karoo	Savanna (Kala <mark>hari)</mark>	and the second second
	Size	20% of SA	33% of SA	C 3.2
	Rainfall	100-520 mm/annum	235-1000 mm/annum (92.7-150.6mm)	e.tuláry.Kengran
	Vegetation	Grassy, dwarf shrubland	C4 grasses & Shrub- tree layer (Desert shrubland)	N14 Pofadder,20
CONSER,	Status	0.6% protected 4% transformed	8.8% protected 23% transformed	
	UNIVERSITI STELLENBC UNIVERSIT	SCH Y		visit concentrating.sun.ac.za contact sterg@sun.ac.za 9

Where/what is the impact on?

Land	Biodiversity		Air		Water		
Soil loss	Displacement	Mortality	Abiotic changes	Biodiversity	Surface water		Groundwater
Changes in land use	Avifauna	Avifauna	GHG emissions	Birds	Usage		Usage
Changes in land cover	Invasion	Flora	Changes in albedo	Insects	Run-off		Salinization
HTF spill risk			Light & noise pollution		Biodiversity		Contamination
			Dust				
Ecosystems							
Species communities Resi		ilience	Gene flow		Nutrient cycling		

"Impact assessment can be broadly defined as the prediction or estimation of the consequences of a current or proposed action."

Where/what is the impact on?

"Impact assessment can be broadly defined as the prediction or estimation of the consequences of a current or proposed action."

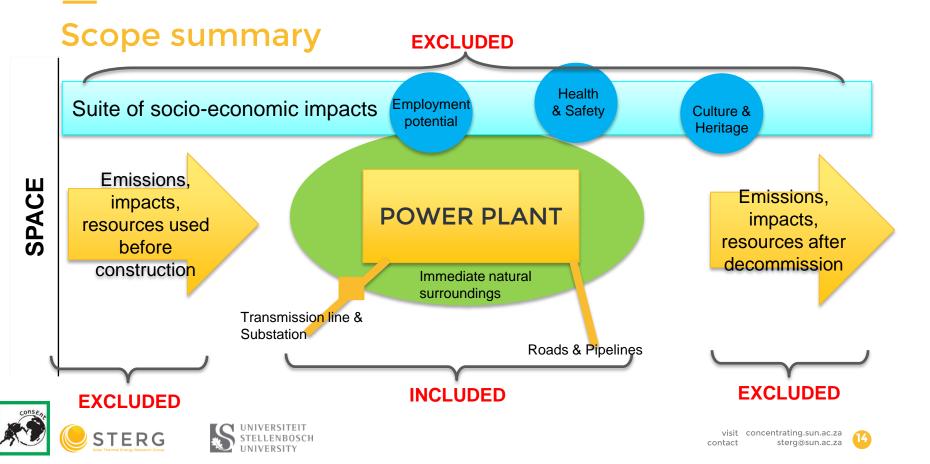
RS

Current approach

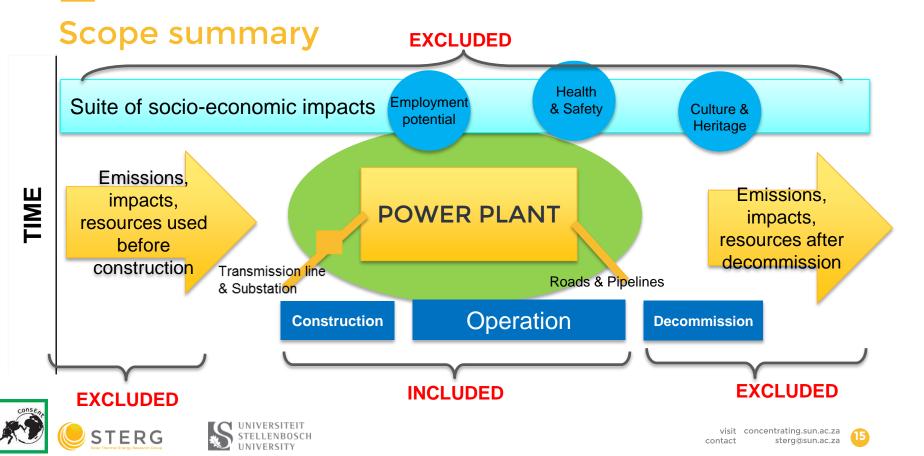
- Legislation (EIA regulations in National Environmental Management Act (Act no. 107 of 1998)
- Mandatory EIAs at project level
- SEA for RE deployment (RE Development Zones)
- EIAs also only tool to evaluate socio-eco impacts
- 'New' research field
- Extrapolation to other RE technologies and time scales

Determining direct impact of CSP

- **Power plant parameters:** Spatial footprint & soil loss, water usage, mortality impact, emissions, spillage, EIA
 - Field-data collection: To be explored
- regional **GIS:** National biodiversity, Hydrology layers, Land cover & ecosystem services, Protected areas


• *i.e.* investigating impact using a synthesis approach

loca



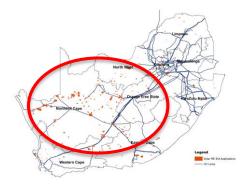
Direct impacts

 $\langle \rangle$

Direct impacts

2030

2015



2050

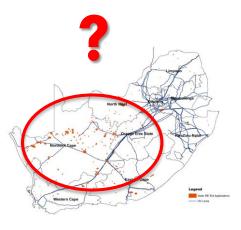
 Have an increased footprint within the Kalahari and bordering

bioregions

 Impacting on biodiversity in general, vegetation types, landuse, water resources and associated ecological processes

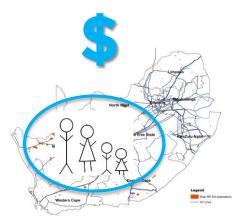
Conclusion

Into the future, CSP is likely to:


Conclusion

It is thus necessary to:

- Make use of this early opportunity
- Determine & monitor the direct impacts of CSP on the natural environment in the Kalahari on a local scale
- Provide an outlook on what this impact is on a regional scale and into the future



Future studies & investigations

Peripheral research

- Determining optimal power plant
 construction methods for minimal impact
- CSP project impact on local communities
- Land-use efficiency of CSP in South Africa
- Co-benefits of RE and ecosystem services
- Impact of CSP and/or PV projects on carbon balance of ecosystem

References

- CSIR, 2015. Financial benefits of renewables in SA in 2014. Available at: http://www.csir.co.za/media_releases/docs/Financial_benefits_Wind_PV_2014_CSIR_10Feb2015_FINAL.pdf
- Department of Energy, 2013. Integrated Resource Plan for Electricity 2010-2030: Update Report. Available at: http://www.doe-irp.co.za/content/IRP2010_updatea.pdf
- Department of Environmental Affairs. n.d. National Environmental Impact Assessment and Management Strategy (EIMS) [online] Available at: Environment.gov.za. Accessed: 14 May 2015.
- Department of Environmental Affairs and Tourism. 2004. Strategic Environmental Assessment, Integrated Environmental Management, Information Series 10, DEAT, Pretoria.
- EnergyBlog. 2015. 'The Energy Blog Renewable Energy In South Africa & Sometimes Beyond'. [online] Available at: Energy.org.za. Accessed: 16 May 2015.
- GeoModel Solar. 2014a. South Africa DNI Map, viewed 14 May 2014 at: http://geomodelsolar.eu/_docs/pr/Stellenbosch-University--GeoModelSolar--PressRelease--New-Solar-Resource-Maps-for-South-Africa--20141105.pdf.
- Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., Allen, M. F., 2014. Environmental impacts of utility-scale solar energy. *Renewable and Sustainable Energy Reviews, 29*: 766-779.
- Mucina, L., Rutherford, M.C. (eds.) 2006. The Vegetation of South Africa, Lesotho and Swaziland: Strelitzia 19, South African National. Biodiversity.
- South African National Biodiversity Institute. N.d. 'Savanna Biome' and 'Nama Karoo Biome' [online] Available at: Plantzafrica.com. Accessed: 16 May 2015.
- Vanclay, F. & Bronstein, D.A. eds., 1995. Environmental and social impact assessment,
- IMAGES:
- http://confluence.org/confluence.php?lat=-29&lon=21
- http://www.plantzafrica.com/vegetation/namakaroo.htm
- http://www.openafrica.org/experiences/route/52-karoo-highlands-route
- https://littleashcloud.wordpress.com/2013/11/18/namaqualand-blooming-marvellous/

Thank you

ACKNOWLEDGEMENTS:

Supervisors: Prof Karen Esler & Paul Gauché

Funding: Centre of Renewable and Sustainable Energy Studies & NRF

CONTACT DETAILS:

Justine Rudman Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

justine@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za