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q Background

Oil Palm value chain
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q Background

African rural CPO processing

v" Dominating traditional Processing (>80 % )

v" Inherent setbacks of traditional technologies

* Lower production capacities

* Labour Intensive

* Poor product quality

Overall low productivity- Mechanisation addresses aforementioned
challenges

Background




q Problem Statement

Reasons for less adoption of mechanised units?

* Perceived risk on profit margins

* Lack of diverse energy

* Social acceptance

Problem
Statement



q Obijectives

Develop process models for various levels of mechanization in the CPO
process

Determine the potential contribution of the process biomass residue to
its energy demands.

To establish the economic impact of mechanization and in-house energy
integration in the CPO process




Modelling Approach
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q Simplified CPO process flow diagram
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q Process configurations investigated

«

Traditional Semi-Mechanised Mechanised

* Household scale * Small-scale * Industrial scale
* 110 liters CPO/day * 1193 liters of CPO/day * 49287 liters CPO/day
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q In-house Energy Generation & Integration

Traditional and semi-mechanised

 Thermal energies by combusting solid residues in Improved cook
stoves

Mechanised (steam, hot water & electricity)

* Cogeneration of heat and power (CHP) from solid residues (MF, PKS,
EFB)

¢ Cogeneration of heat and power from Biogas (POME)
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q Cogeneration (CHP) from solid residues

EFB has high moisture (65%) & less combustible

Two scenarios investigated:
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q Cogeneration (CHP) from solid residues

* Steam turbine power-to-heat ratio between 0.1 — 0.3 (US EPA, 2007)
* Process model developed in Aspen Plus® simulation software

* Economic assessment based on Ghana’s year 2014 conditions (Interest rate
-24%,; Inflation rate -15%)
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5 Cogeneration (CHP) from solid residues

Results
Technical Performance

Annual rate of generation Scenario 1 Scenario 2
MF (tons/yr) 13141.44 13141.44
PKS (tons/yr) 6836.47 6836.47
EFB (tons/yr) - 45576.46
CPO Process steam (tons/yr) 40884.48(100)" 40884.48(100)"
CPO Process hot water (tons/yr) 31074.86(100)" 31074.86(100)"
EFB drying steam (tons/yr) - 161840.62
CPO process electricity (MW/yr) 1654.85(100)" 1654.85(100)"
Export electricity (MW/yr) 4705.64 17040.79

*Values in parenthesis represents percentage of energy demand of the 13 ton FFB/hr CPO mill attained

Economic Performance

Electricity s.p. of $0.207/kWh Electricity s.p. of $0.348/kWh
Parameters
Scenario 1 Scenario 2 Scenario 1 Scenario 2

NPV (million $)

IRR (%)

Payback period (yrs)
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q Cogeneration (CHP) from solid residues

Conclusions

* Both Scenarios investigated CAN MEET in-house energy demand
with excess electricity for export.

* Scenario | and 2 did NOT achieve expected IRR of 40%. Scenario 2
(EFB addition) improved the economics from IRR of 9.94% to 12.93%

* Realistic electric price at $1.132/kWh and $0.842/kWh for Scenario
| and Scenario 2 respectively (for IRR of 40%).

 Scenarios | and 2 attained NPVs of $2.145 million and $1.774 million

at grant contributions of 80 and 65% respectively at prevailing power
price of $0.348/kVVh. Thus both are viable under grant funding.
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q Cogeneration (CHP) from Biogas (POME)

Palm oil mill Effluent (POME) biogas yield of 2.65 - 4.96 m3m™> day™!
(Yeoh, 2004).

Scenarios investigated: Steam-turbine and Gas-engine routes
CHP process modelled in Aspen Plus® simulation software

Economic assessment based on Ghana's year 2014 economic
conditions (Interest rate -24%; Inflation rate -15%)
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q Cogeneration (CHP) from Biogas (POME)

* Steam turbine process- similar to solid residue CHP

* (Gas-engine process

PROCESS FLOW DIAGRAM OF POWER GEMERATION ON BIOGAS.
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E Cogeneration (CHP) from Biogas (POME)

Results

Technical Performance

Gas-engine route Steam turbine route
e e
2308.198 (5.65)" 11742.602 (28.72)"
29880 (96.16)’ :
1654.85 (100)* 368.865 (22.29)"
TIT :

*Values in parenthesis represents percentage of actual energy demand by the 13 ton FFB/hr CPO mill attained

Economic Performance

Electricity s.p. of $0.207/kWh Electricity s.p. of $0.348/kWh
Parameters
Gas-engine Steam turbine Gas-engine Steam turbine
NPV (million $) -6.38 -14.46 -4.71 -14.22
IRR (%) 7.80 -0.77 14.89 0.18
Payback period (yrs) 11.3 14.3 9 13.7
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q Cogeneration (CHP) from Biogas (POME)

Conclusions

* Gas-engine and steam-turbine NOT meet all in-house energy demand. Gas-engine
route attained all process electricity demand with excess for export.

* Both routes investigated did NOT attain expected IRR of 40%. Gas-engine route
more promising with IRR of 14.9% at $0.348/kWh.

* Realistic electricity price at $0.753/kWh and $9.403/kWh for gas-engine route
and steam-turbine route respectively (for IRR of 40%)

* At power price of $0.348/kWh, Gas engine attained NPV of $158000 at 40% grant;
steam turbine NPV of $1.834 million at 90% grant. At $0.207/kWVh, gas-engine NPV
of $234000 at 60% grant; steam turbine NPV of $576000 at 90% grant. Thus both
viable under grant funding.
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Results of Energy Integration in CPO
q Processes
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* Mechanised I/C — adopted CHP solid residue (+EFB) (100% in-house energy attained &
competitive power price of $0.842/kVVh)

*  Substituting external energy firewood (traditional), and national grid power (mechanized)
with available CPO process biomass residues is feasible.

*  The highest and least energy intensive processes: semi-mechanized B/C (37.058 M)/kg
CPO) and mechanized B/C or I/C (6.007 MJ/kg CPO) respectively.
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Economic Results of CPO Process
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e Variation in TCl ranging $4464 - $17.746 million due to difference in capacities

e SCI ranging $0.013/kg - $0.055/kg with semi-mechanised level having least range of $0.013 - 0.019/kg while
mechanised level attained highest range of $0.053 - 0.055/kg

e At B/C scenarios, traditional level’s SPC was higher than the semi- and mechanised level’s by 15.25% and
63.66% and by 31.90% and 42.73% at |/C scenarios respectively. Thus, suggesting a high benefit of
economies of scale on the production cost.
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q Economic Results of CPO Process

o

Traditional CPO CCF Semi-Mechanised CPO CCF
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q Conclusions

For (B/C), only the mechanized process is economically viable with an
NPV of $18.5 million and IRR of 47.23%.

For I/C: semi-mechanized and mechanized processes are the
economically viable options with IRR of 143% and 40.57% respectively.

Poor performances of traditional- B/C & -I/C and the semi-mechanized
B/C mainly due to their unduly high SCI ranging $0.019 — 0.053/kg and
SPC between $0.43| — 1.187/kg as they still remained unviable under
100% grant funding

Thus mechanization is economically beneficial in CPO processing

In-house energy from process residue is viable and most promising at

semi-mechanized and mechanized levels.
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