

Evaluation of *S. cerevisiae* promoters during growth on xylose

<u>L. Mande¹</u>; W.H. Van Zyl²; I. Ncube¹; D.C. La Grange¹

Motivation

•Identify a promoter that is strongly induced during growth on xylose

• Increase production of recombinant enzymes

needed during the degradation of lignocelluloses

•Recombinant enzymes such as xylanases, betaglucosidase, cellulases etc

- S.cerevisiae has been used for years in the production of recombinant proteins
- > S.cerevisiae is a widely used organism
 - fast cell growth
 - tolerate high ethanol concentration
 - tolerate wide spectrum of inhibitors
 - well-characterised physiology & genetics
 - GRAS status

- Glucose is the most abundant sugar in nature (cellulose)
- S. cerevisiae is a Crabtree positive yeast
- Its produces ethanol on glucose under aerobic conditions (little biomass)
- High expression level of recombinant protein is linked to the amount of biomass obtained during fermentation (Ferndahl *et al.*, 2010)

- Xylose is the second most abundant sugar in nature and considered a waste in most industries
- S. cerevisiae cannot utilise xylose as a carbon source
- S.cerevisiae engineered to grow on xylose has been reported to produce more biomass on xylose
- Xylose is the more suitable carbon source in recombinant protein production

Restriction map of the plasmids

Figure 1. pPGK1 used as base for the construction of all episomal plasmids.

Figure 2. Engineered *S.cerevisiae* on xylose and SC –URA3 with glucose.

Growth of engineered and wild S.cerevisiae on xylose type S.cerevisiae on glucose DD600nm 0D600nm n Incubation Time Incubation Time (Hour)

Growth of engineered and wild type

Figure 3.Growth curve of the wild type and engineered yeast on glucose and on xylose

Transformants spotted on RBB-xylan plates with different carbon source

RBB-xylan xylose

RBB-xylan glucose

Figure 4. The RBB-xylan plates used to confirm xylanase activity

DNS ASSAY was done to determine the xylanase activity following the method by (Bailey *et al*, 1992)

Figure 5. Determination of the amount of xylanase enzyme produced using DNS assay

Results and Discussion

Figure 6. Determination of the amount of xylanase enzyme produced using DNS assay

Construction of *fur1::LEU2* strains

FUTURE WORK

Evaluation of episomal promoters during growth on xylose

Determine metabolic burden during growth on xylose in the bioreactor

ACKNOWLEDGEMENT

➤ Many thanks Dr. La Grange

- Prof Ncube and Prof van Zyl
- ≻ Dr V. Mbazima
- Van Zyl lab (Stellenbosch University)
- Department of BMBT (University of Limpopo)
- RSES for financial assistance

Thank you

Fur1 Disruption

fur1::LEU2 allele was Isolated as 3.27kb from pDF1 plasmid

➤Ncol-Nsil restriction enzymes

Disrupted using the gene replacement method

(Aristidou and Pentila,2000)

Transformation of integrated plasmids

Integrating expression cassettes

- PGK1p and PGK1t isolated from plasmid by restriction digest
- ➤ G418 isolated from plasmid by PCR
- 40bp URA3 overhangs added to expression cassette (target cassette to URA3-locus)
- Expression cassette cloned into pUC19

Transformation

Rapid genomic DNA isolation, "Bust and Grab" method

Construction of the strain that grows on xylose

- S. cerevisiae Y294 (Matα leu 2-3, 112 ura 3-52,his 3,trp1-289)
- Transformation with pMJM121 with Synthetic codon optimised xylose isomerase
 - ➢ B. thetaiotaomicron XI
 - Selective marker (zeocin)
- Disruption cassette (gre3::Xyl3Hygromycin) was used to knock out GRE3 gene

RESULTS

Figure 2: (A) Agarose gel electrophoresis of the PCR with XYN2 primers (B) Gel electrophoresis of PCR with promoter specific primer and XYN2 right primer