Optimization of a Mini H.A.W.T. to Increase Energy Yield During Short Duration Wind Variations

for tomorrow

4th Post Graduate Renewable Energy Symposium July 2014

Sean Poole

Contents

Justification
Theory
Analytical Results
Conclusion

Justification - Reports

- In general poor performance in built environment.
- Warwick Wind Trials:
 - 26 small scale turbines.
 - 168 950 hours logged.
 - Capacity factor of 0.85% (4.15%).
- Energy Saving Trust:
 - Average 3% capacity factor.
 - Compared to 19% rural.

Justification - Challenges for Small Wind Turbines

- Short term wind variations:
 - Gusts.
 - Turbulence.
 - Horizontal component fluctuations.
 - Vertical component fluctuations.
- Very low Reynolds number:
 - Low urban wind velocities.
 - Small blade chord length.
- Startup wind speed:
 - Extremely low Reynolds number.
 - Very high angle of attack.
 - No pitching mechanism.
 - Blade torque only.

- Urbanization:
 - Low wind speeds.
 - Gusty and turbulent winds.
 - Noise.

Theory - Blade Element Momentum Theory

- Betz Limit = 59%.
- Airfoil results from Xfoil.
- No losses considered.
- a axial induction factor.
- a' tangential induction factor.
- Lift/drag optimized.
- NACA 4412.

Theory - Resultant Diagram

Theory - Proposed Solution

- Increase blade chord length.
- Maintain lift.

Theory - Blade Profiles

Results - BEM Theory

Designed for 8m/s at TSR = 6. Diameter 3m. Constant chord 4 blades. Optimal 3 blades.

Results - Cp Values (per Element)

Designed for 4m/s at TSR = 6. Diameter = 3m. Number of blades = 3. L/D OPTIMAL CHORD.

Results - Cp Values (per Element)

Designed for 4m/s at TSR = 6. Diameter = 3m. Number of blades = 3. CONSTANT CHORD.

Results - L/D Ratio vs Reynolds Number

NACA 4412 Aerofoil. XFOIL results. Visc flow. Ncrit = 9.

Conclusion - Benefits of "Oversized" Design

- Short term wind variations:
 - Better utilization of gust energy.
 - Better utilization of higher turbulence energy.
 - Better utilization of non ideal wind angles: horizontal and vertical component fluctuations.
- Very low Reynolds number:
 - Much larger Re number (about 2.5 times) when compared to conventional L/D optimization.

- Startup wind speed:
 - Larger Re number.
 - Higher solidarity.
 - Lower angle of attack.
 - Increased blade torque.
- Urbanization:
 - Low wind startup.
 - Gust/Turbulence optimized.
 - Less blade noise due to lower angle of attack.

Conclusion – The Way Forward

- 1. 3D printer to prototype blades.
- 2. 2 turbines for simultaneous testing.
- 3. Labview interface to record data and control the turbines.
- 4. 3D sonic anemometer to measure wind quality and

quantity.

Feedback?

Thank you

