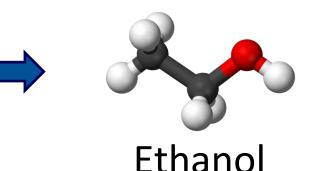
Multi-objective Optimisation of Pretreatment of Sugarcane Bagasse for Bioethanol Production

Joanne Crimes

Supervisors: Prof. Duncan Fraser & Dr. Adeniyi Isafiade

Environmental & Process Systems Engineering Chemical Engineering University of Cape Town

SPES BON


South African Context

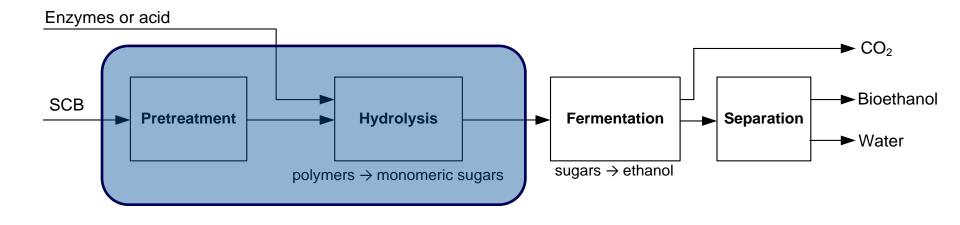
Sugarcane bagasse (SCB) Used to produce steam 3.3 Mt/year (Lynd et al., 2003)

Project Overview

Sugarcane bagasse

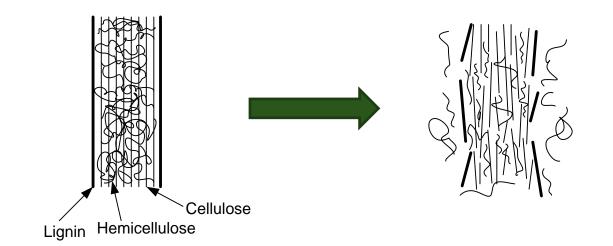
Lignocellulose

22% lignin


40% cellulose

(polymer of glucose, C6)

(aromatic polymer)


20% hemicellulose (branched polymer of C5 & C6 sugars)

Project Overview

<u>Aim:</u> To use modelling to optimise the process flowsheet for pretreatment and hydrolysis in terms of both economic and environmental objectives.

Pretreatment

Biological, physical, chemical, physicochemical

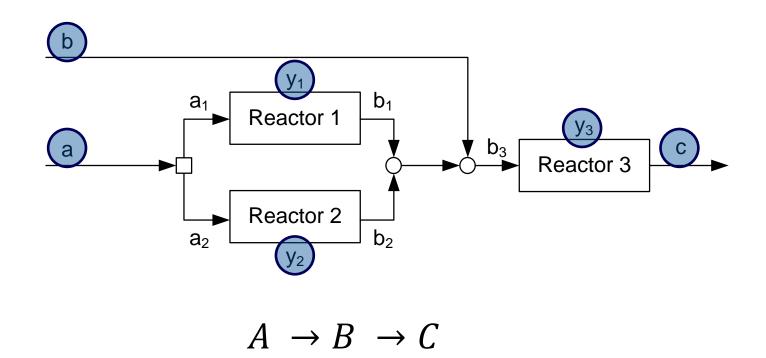
Hydrolysis

 Breaking polysaccharides into monomers using water

 $(C_6H_{10}O_5)_n + nH_2O \to n(C_6H_{12}O_6)$

- Enzymatic
 - pH 4.8, atm P, T of 45 50°C
 - May require detoxification before
- Chemical
 - Using acid, atm P, T of 180 230°C
 - Produce more inhibitors to fermentation

Modelling


Why modelling?

- Process design is usually uses a sequential approach
- Modelling uses a simultaneous approach
 Interactions can be taken into account and optimised

Modelling

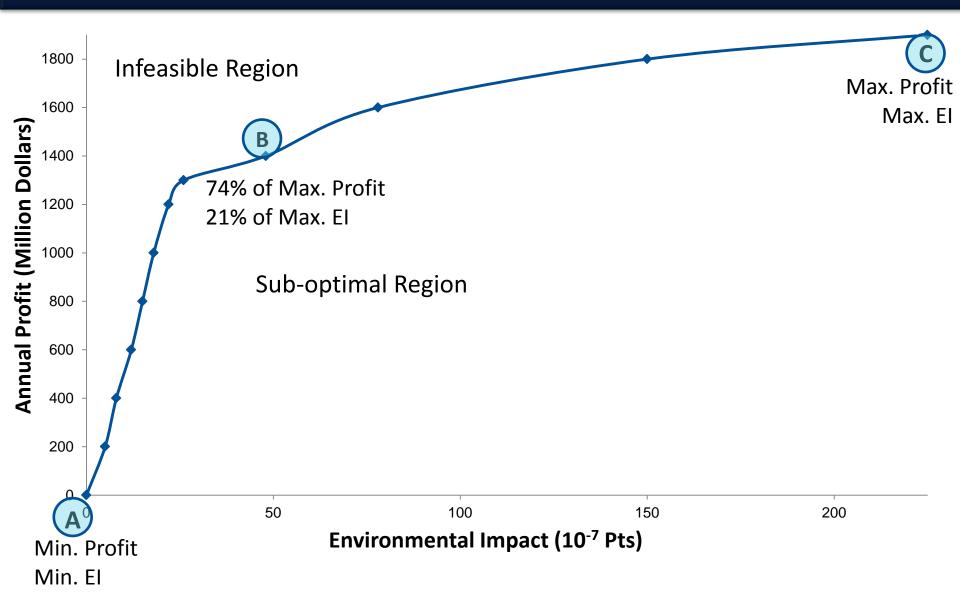
Superstructures

Can be used to embed many possible flowsheets into one model

Modelling

General process synthesis problem formulation

$$z(y^K) = \min_x c^T y^K + f(x)$$


Such that: $g(x) \leq 0$ h(x) = 0A x = a $B y^{K} + C x \leq d$ $x \in X = \{x \mid x \in \mathbb{R}^n, x_I \leq x \leq x_{II}\}$ $y^{K} \in Y = \{y^{K} | y^{K} \in \{0,1\}^{m}, Ey^{K} \leq e\}$ Mixed Integer Non-Linear Problem (MINLP)

Environmental Impact

SimaPro using a liquid fuels database.

Multi-Objective Optimisation

Chosen Pretreatments

Pretreatment:

Steam explosion (acid catalysed & uncatalysed) Acid pretreatment

Delignification:

Using NaOH

Hydrolysis:

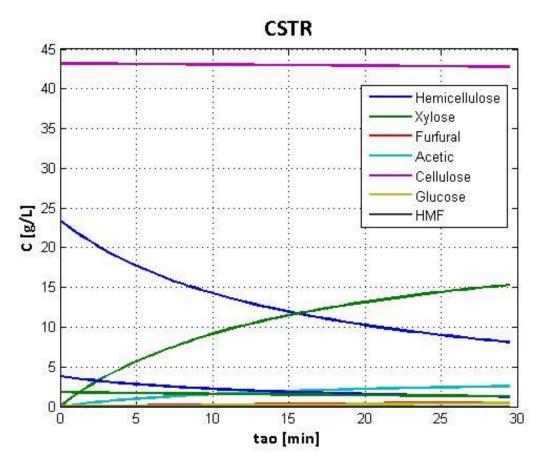
Acid Enzymatic

Steam Explosion Model

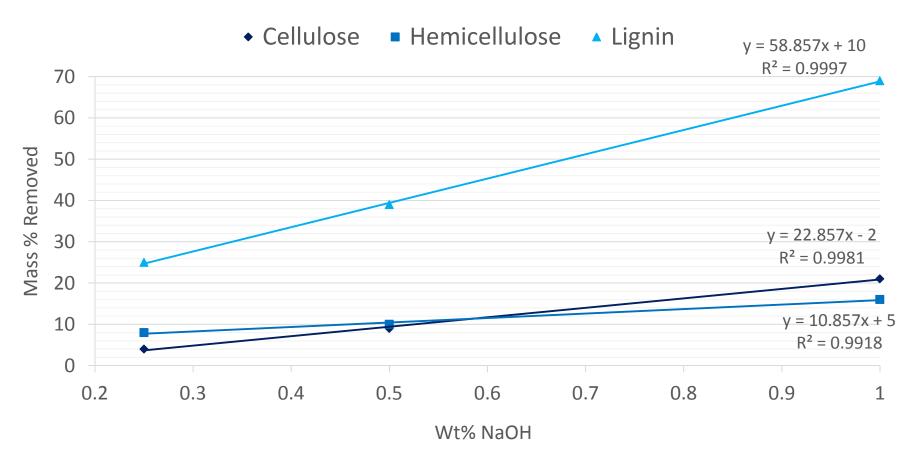
Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Rocha, G. J. M., Martín, C., Vinícius, F. N., Gómez, E. O., & Gonçalves, A. R.

- CTBE's Aspen simulation based on Rocha's paper.
 - Uncatalysed, 11 barg, 190°C
 - Acid catalysed, 5 barg, 150°C

aspentech


- Conversions for individual reactions.
- Used in General Algebraic Modelling Software (GAMS).

Acid Pretreatment Model


Kinetic study of the acid hydrolysis of sugar cane bagasse. Aguilar, R., Ramırez, J., Garrote, G., & Vazquez, M.

Delignification Model

Chemical & morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility.

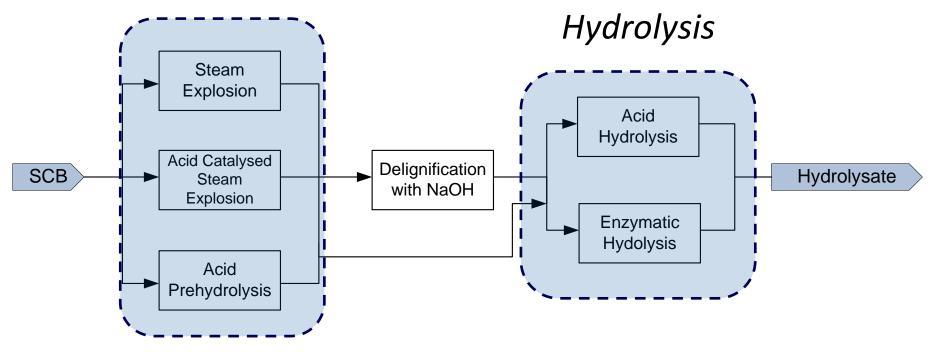
Acid Hydrolysis Model

Dilute acid hydrolysis of sugar cane bagasse at high temperatures: A kinetic study of cellulose saccharification and glucose decomposition. Part I: sulfuric acid as the catalyst. Gurgel, L. & Marabezi, K.

- Kinetic equations for cellulose reactions with Arrhenius temperature relationship.
- Conversion factors for hemicellulose to xylose and xylose to furfural.
- GAMS model optimises T (between 180 & 230°C), tao, acid percentage (0.07, 0,14 or 0.28 wt%)

Enzymatic Hydrolysis Model

Technological Assessment Program (PAT). The Virtual Sugarcane Biorefinery (VSB). Bonomi, A. et al.


- CTBE's Aspen simulation.
- Conversions for individual reactions.
- Fixed T, tao and enzyme loading.
- Least flexible model.

Superstructure

Pretreatment

Challenges

- Creating a meaningful economic objective function
- Finding good data
 - Kinetic of acids is well researched
 - Steam explosion more black box approach
 - Trade secrets around enzyme mixtures
- Combining models
 - Acid prehydrolysis & acid hydrolysis
 - Effects of pretreatment on hydrolysis
 - Effects of delignification on hydrolysis

Limitations

- Hard to quantify physical effects
- Experiments have very specific conditions
 - Difficult to adjust experimental to new situations
 - Little flexibility in some models (eg. fixed residence time, water to solids ratio)
- Solvers very sensitive to initialisations (local optima)

Conclusion

- Multi-objective modelling
 - Economic and environmental objectives
- Pretreatment, delignification, hydrolysis
 - Kinetics and simulations
- Combining models and incorporating delignification

Acknowledgements

The National Research Foundation

Laboratory of Bioethanol Science and Technology (CTBE), Campinas, Brazil

Chemical Engineering Department at Universidad Nacional, Manizales, Colombia

Thank you.

Contraction of the

N. FU

R

ā

R