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ABSTRACT 

Low concentrator photovoltaic systems are capable of increasing the power produced by 

conventional silicon photovoltaic cells, thus effectively lowering the cost per kWh.  

However, power losses associated with resistance and temperature have limited the large 

scale implementation of this technology.  In this study, the optical- ,electrical- and thermal 

sub-systems of a low concentrator photovoltaic system are theoretically and experimentally 

evaluated with the aim of minimizing the power losses associated with series resistance and 

temperature.  A 7-facet reflector system, with an effective concentration ratio of 4.7, is used 

to focus irradiance along a string of series connected poly-crystalline photovoltaic cells. I-V 

characteristics of 4-, 6- and 8-cell photovoltaic receivers are measured under 1-sun and 

4.83-sun conditions.  Under concentration, the 8-cell photovoltaic receiver produced 23% 

more power than the 4-cell photovoltaic receiver, which suggests that the effect of series 

resistance can be minimized if smaller, lower current photovoltaic cells are used.  A thermal 

model, which may be used to predict operating temperatures of a low concentrator 

photovoltaic system, is experimentally evaluated within a thermally insulated enclosure.  

The temperatures predicted by the thermal model are generally within 5% of the 

experimental temperatures.  The high operating temperatures associated with the low 

concentrator photovoltaic system are significantly reduced by the addition of aluminium 

heat sink.  In addition, the results of a thermal stress test indicated that these high operating 

temperatures do not degrade the photovoltaic cells used in this study.  The results of this 

study suggest that the power output of low concentrator photovoltaic systems can be 

maximized by decreasing the size of the photovoltaic cells and including an appropriate heat 

sink to aid convective cooling. 
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Chapter 1 

 

INTRODUCTION 

 

The combustion of fossil fuels has remained the primary source of electricity despite the 

development of several alternatives.  However, devastating environmental effects and 

rapidly diminishing fossil fuel reserves suggests that it is more important than ever to 

develop a large-scale, environmentally friendly, renewable source of energy.  This chapter 

briefly discusses the background and scope of this study.     
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1.1  Background 

The world’s first power station, the Edison Electric Light Station, began operation in London 

during January 1882.  Today, 130 years later, the combustion of fossil fuels accounts for 

approximately 90% of all greenhouse gas emissions and significantly contributes to the 

emission of other pollutants, such as sulphur dioxide and heavy metals [1].  These pollutants 

are harmful to the environment and may ultimately result in climate change.  Figure 1.1 

shows the steady increase in global carbon emissions since 1980 [2].  Furthermore, it is 

estimated that the global coal, oil and natural gas reserves will be depleted within 150 years 

and cost of energy production is expected to increase sharply as these reserves diminish.   

 

 

 

Figure 1.1: Carbon emissions since 1980 [2]. 
 

 

 

 

 

Figure 1.1 Carbon emissions since 1980 [2] 
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Unfortunately, combustion of fossil fuels continues to be the primary source of energy in 

the 21st century despite the associated environmental hazards.  According to the US Energy 

Information Administration, renewable energy sources account for only 20% of the world’s 

energy production, while coal, oil and gas account for 67%.  Nuclear power accounts for the 

majority of the remaining 13%.  Environmentally friendly, renewable sources of energy need 

to be extensively implemented to ensure long term energy availability and preservation of 

the environment. 

 

Biomass energy, which involves the burning of plant material, accounts for more than 50% 

of all energy produced from renewable  sources, but the associated pollution still needs to 

be regulated [2]. Hydro-electric energy also significantly contributes to renewable energy 

production, but the mechanical nature of the technology increases maintenance costs.  

Alternatively, photovoltaic (PV) cells are an environmentally friendly, relatively maintenance 

free source of renewable energy.                   

 

Unfortunately, low efficiencies and high production costs have limited the large-scale 

implementation of PV technology.  However, concentrator PV (CPV) technology has the 

potential to significantly strengthen the PV industry through increased electrical output 

which translates to lower costs per kWh.  A 220 MWh/year HCPV system was recently 

installed in China, supplying power to approximately 200 000 nearby residents [3].   

Unfortunately, HCPV systems are still relatively expensive to manufacture and construct.  

Alternatively, the cost of silicon solar cells continue to decrease [4], as shown in Figure 1.2, 

and thus low concentrator photovoltaic (LCPV) systems that use these PV cells may become 

economically viable in the future. However, further research is necessary to fully understand 

the optical, electrical and thermal properties of these systems. 
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Figure 1.2: PV module cost per watt in the United States. 
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1.2 Scope   

The relatively high series resistance associated with silicon PV cells generally leads to 

increased power losses under concentration conditions.  However, the use of small, low 

current PV cells may significantly reduce these power losses.  In this study, several different 

electrical configurations are investigated theoretically and experimentally to assess the 

viability of using low current PV cells in LCPV systems.  The effect of concentration on 

various PV parameters, such as short circuit current and fill factor, is also evaluated.  

 

High operating temperatures also cause power losses in LCPV systems.  A thermal 

management system needs to be implemented to ensure the power output of a LCPV 

system is maximized.  In this study, a thermal model is developed to estimate the operating 

temperatures associated with a LCPV system under various conditions.  This model is 

compared to experimental temperature measurements and is also used assess the 

efficiency of a proposed thermal management system.  A thermal stress test is performed to 

evaluate high temperature degradation of the PV cells.   

 

The following chapters discuss the optical-, electrical- and thermal sub-systems of a LCPV 

system.  The results are used to make recommendations towards the design of future LCPV 

systems. 
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Chapter 2 

 

LCPV TECHNOLOGY 

 

LCPV systems use optical materials to refract or reflect irradiance onto PV cells allowing 

large areas of PV material to be replaced by lenses or mirrors.  Generally, the design of a 

LCPV system may be divided into 3 sub-systems, namely optical, electrical and thermal.  This 

chapter introduces the optical-, electrical- and thermal sub-systems of a LCPV system and 

addresses the specific research goals associated with each sub-system.  A few examples of 

CPV arrays are also discussed.             
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2.1  Optical Sub-System 

The optical sub-system is an important component of any CPV system as it directly 

determines the geometric concentration ratio.  The geometric concentration ratio (  ) of a 

CPV system is the ratio of the aperture area of the lenses or mirrors to the area of the PV 

material.  CPV systems are often classified according to the geometric concentration ratio:     

 

High concentrator photovoltaic (HCPV) systems:          

Low concentrator photovoltaic (LCPV) systems:         

 

CPV systems with intermediate geometric concentration ratios (         ) may be 

classified as medium concentrator photovoltaic systems [1].  Unfortunately, the effective 

concentration ratio (  ) is usually less than the geometric concentration ratio due to optical 

losses associated with refraction and reflection.     

 

The lenses and mirrors used in CPV systems may be used to concentrate irradiance to a 

point or along a line.  Generally, lenses are used to achieve a high geometric concentration 

ratio by focussing irradiance to a point, whereas mirrors are used to achieve a low 

geometric concentration ratio by focussing irradiance along a line [2].  However, HCPV and 

LCPV systems are not restricted to lenses and mirrors, respectively, and may even include a 

combination of optical materials to meet specific design requirements.   

 

The optical sub-system of a CPV system usually requires that the sun be tracked along 1- or 

2-axis to ensure correct optical alignment.  For this reason, a mechanical tracker system is 

essential for effective operation of CPV systems [2, 3].  Figure 2.1 shows a 2-axis tracker 

used at the Aquila Game Reserve in South Africa. 

 

Experimentally, it is important to evaluate the optical sub-system with respect to effective 

concentration ratio.  This study aims to design and construct an optical sub-system with an 

effective concentration ratio that is within 10% of the geometric concentration ratio.    
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Figure 2.1: HCPV system mounted on a 2-axis tracker system at Aquila Game Reserve  
in South Africa [4] 
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2.2 Electrical Sub-System 

The most important part of the electrical sub-system is the PV cells.  High efficiency PV cells 

will transform a greater percentage of incident irradiance into electrical work and 

consequently maximize electrical power output of the CPV system.   

 

Multi-junction PV cells have efficiencies of up to 43.5% [5] and are capable of operating 

under high concentration conditions [6].  The high efficiency associated with multi-junction 

PV cells is the result of a combination of reduced themalization and transmission losses 

through the cell and low resistive losses.  However, multi-junction cells are relatively 

expensive to manufacture and are thus reserved for use in HCPV systems [7].  

 

Conventional silicon PV cells have an efficiency of up to 20% [8] and are relatively 

inexpensive to manufacture.  Owing to resistive losses, conventional silicon PV cells are not 

capable of efficient operation under high concentration conditions, but have the potential 

to be economically feasible in LCPV systems.  Specialist LCPV silicon cells are currently 

manufactured in small quantities and have an efficiency of approximately 24% under 

concentration [7].  

 

This study aims to maximize the power output of the electrical sub-system by developing 

strategies to reduce the resistive losses associated with conventional silicon cells under 

concentration. 

 

 

 

 

 

 

 

 

 

   



11 
 

2.3 Thermal Sub-System 

LCPV systems typically operate at higher temperatures than standard PV systems due to 

increased incident irradiance per cell area.  High operating temperatures reduce the power 

output of PV cells making it necessary to include a cooling mechanism in the thermal sub-

system. 

 

Increasing the amount of energy dissipated by convection is the simplest means of cooling a 

PV cell.  This is accomplished by extending the convective surface area through the addition 

of a heat sink.  Natural convection of air in the vicinity of the heat sink may be sufficient to 

maintain acceptable operating temperatures under certain conditions.  However, the 

inclusion of a fan to induce forced convection of air may be necessary at higher 

temperatures.  Liquid cooling systems, which pump water through a collection pipes, may 

be a reasonable consideration in extreme cases.  The energy consumption and efficiency of 

fans and pumps need to be carefully evaluated before implementation [7].              

 

Before a cooling system may be proposed, it necessary to have a thorough understanding of 

energy transfer and dissipation within a LCPV system.  The effect of various environmental 

conditions, such as air flow velocity and irradiance, on the temperature of the PV cells 

within the LCPV system need to be evaluated experimentally.  Using this information, it 

should be possible to predict the operating temperature of the PV cells according to the 

environmental conditions of a specific place or at a specific time.  These issues will be 

addressed experimentally in this study and the results will be used to aid the design of a 

thermal management system for the LCPV system under investigation.              
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2.4 CPV Arrays 

Several large-scale CPV systems have been installed throughout the world to supply 

electricity to nearby industrial and residential areas.   In some cases, these CPV arrays are 

also connected to the national electrical grid.   

  

2.4.1  Rockingham, Australia 

The Rockingham CPV system was developed by the Australian National University and was 

connected to the public grid in July 2000.  The CPV array, consisting of 152m2 of silicon PV 

cells, provides approximately 20 kW.  It uses 80 mirrors and a 2-axis tracing system as shown 

in Figure 2.2 [9].  

 

2.4.2 California, USA 

A CPV array, shown in Figure 2.3, was installed on Nichols Farms in California in April 2011.  

The 1.2 MW CPV array, developed by Bechtel and SolFocus, uses a 650X concentration 

reflective system to produce 70% of electrical power demand [10].     

 

2.4.3 Sicily, Italy 

The installation of the largest grid connected CPV array was completed during June 2012 in 

Italy.  It uses multi-junction PV cells, 2-axis trackers and Fresnel lenses to produce a 1.2 MW 

peak.  Once fully operational, the CPV array will reduce the production of carbon dioxide by 

approximately 125 tons per year [11]. 

 

2.4.4 Qinghai, China 

A 100 kW HCPV array was installed in China during 2012.   According to Isofoton, the array is 

capable of producing 50% more energy than conventional PV systems and will supply 

electricity to approximately 200 000 residents in the Qinghai province [12].         
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Figure 2.2: CPV array in Rockingham, Australia [9] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3: CPV array in California, USA [10] 

 

http://www.google.co.za/imgres?q=rockingham+photovoltaic&um=1&hl=en&sa=N&biw=1366&bih=621&tbm=isch&tbnid=tyFxuvwSlO6vZM:&imgrefurl=http://www.sunenergysite.eu/en/concentrator.php&docid=ANCzIKEsuMqrFM&imgurl=http://www.sunenergysite.eu/images/apps/concentrator_pic04a.jpg&w=500&h=507&ei=wCxWUIHDM8m5hAfp0oGoDg&zoom=1&iact=hc&vpx=110&vpy=131&dur=1667&hovh=226&hovw=223&tx=80&ty=120&sig=101357478047591176759&page=1&tbnh=134&tbnw=127&start=0&ndsp=20&ved=1t:429,r:0,s:0,i:72
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2.5 Summary 

CPV systems use optical materials to refract or reflect irradiance onto PV cells allowing large 

areas of PV material to be replaced by lenses or mirrors.  Apart from the optical sub-system, 

an efficient electrical- and thermal sub-system is necessary to maximize the power 

produced by a CPV system.  The following chapters investigate the optimization of the 

optical-, electrical- and thermal sub-systems of a LCPV system, whilst focussing on the 

minimization of power losses associated with resistance and temperature.    
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Chapter 3 

 

OPTICAL SUB-SYSTEM 

 

The optical sub-system is responsible for concentrating irradiance onto the PV cells and 

therefore directly determines the geometric concentration ratio of the LCPV system.  A 

comprehensive evaluation of the optical properties of the LCPV system is beyond the scope 

of this study, however, it is necessary to briefly discuss the basic elements of the optical sub-

system.  This chapter outlines the design, implementation and construction of an optical 

sub-system and discusses the corresponding geometric- and effective concentration ratios.          
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3.1  Optical Model 

The optical sub-system used in this study is a line focused 7-facet reflector system.  

Alternatively, a point focused reflector system may be used for high concentration 

applications [1].  Figure 3.1 shows a conceptual illustration of the reflector system.  It is 

important to note that the active area of the PV receiver is orientated away from the 

incoming irradiance so that without the faceted reflector system the PV cells do not receive 

any irradiance.   

 

Figure 3.1: Conceptual illustration of optical sub-system 

          

The optical model was designed to meet the following requirements: 

 The reflector system must consist of a collection of rectangular facets  to facilitate 

ease of construction. 

 Each facet must provide uniform illumination across the PV cells 

 The reflector system must provide a satisfactory geometric concentration (    ) 

while restricting the height of LCPV system to a minimum  
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The length, width and angle of orientation of each reflector facet need to be calculated 

according to these requirements.  As can be seen in Figure 3.1, the length of each reflector 

facet is simply equal to the length of the PV receiver, but the width of each reflector facet 

and angle of orientation need to be calculated to meet the design requirements.  A program 

(see appendix) was written in Mathematica to calculate the length of each reflector facet 

and the corresponding angle of orientation for a given PV receiver height. 

 

The results for a 7-facet reflector system corresponding to a PV receiver height and length 

of 0.4m and 0.1m respectively are listed in Table 3.1.  Figure 3.2 shows a 1:3 scale drawing 

of a 7-facet reflector system and a PV receiver. 

 

Table 3.1: Reflector facet length and angle of orientation 

2Facet Length (mm)   (°) 

1 98 7 

2 92 14 

3 83 19 

4 74 24 

5 65 27 

6 57 30 

7 50 33 
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As mentioned previously, the length of each reflector facet is equal to the length of the PV 

receiver.  For this reason, the geometric concentration ratio, as discussed in Section 2.1, of 

the optical sub-system is equivalent to the ratio of the total reflector width projected along 

the horizontal axis to the PV receiver width.  The geometric concentration ratio for the 

optical sub-system used in this study is thus 4.83 as shown in Figure 3.2.   

 

 
   

  
  

 
  
  

      (3.1) 

 

   is the total projected area of the reflector system and    is the area of the PV receiver.  

   is the total projected width of the reflector system and    is the width of the PV 

receiver. 

 

The solar cells within the LCPV system used in this study will thus receive 4.83 times more 

irradiance, assuming no optical losses, compared to conventional operating conditions 

without any concentration.  However, it is expected that the effective concentration ratio 

would be slightly less as the optical model does not account for any optical losses.  This 

concentration ratio is a significant improvement on previous LCPV trough designs [2].            

 

The optical model may be used to design a similar optical sub-system consisting of 

more/less facetted reflectors.  Figure 3.3 shows the concentration ratio of the optical sub-

system as a function of the number of reflector facets as determined by the optical model.    
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Figure 3.3: Graph showing geometric concentration ration as a function of number of facets 

 

The geometric concentration ratio contribution of each reflector facet decreases as the 

number of facets increases.  This observation indicates that there exists a finite limit to the 

geometric concentration ratio associated with the optical model discussed previously.  The 

geometric concentration ratio associated with an optical sub-system consisting of 10 

reflector facets is 5.76, but adding an additional 5 reflector facets only increases the 

geometric concentration ratio by 0.86.  It therefore seems reasonable to conclude that 

constructing an optical sub-system consisting of more than 10-facets would not be 

financially viable.       
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3.2 Construction 

The faceted reflector frame was machined from a 6mm wooden sheet to ensure that the 

structure was lightweight and rigid.  A wooden frame also provides insulation within the 

LCPV system to facilitate an evaluation of the thermal sub-system as discussed in Chapter 5.  

Seven reflector facets were cut from a sheet of Alanod PV reflector material [3] and 

attached to the wooden frame.  The Alanod reflector material was evaluated as part of an 

associated study which indicated that it is more than 95% reflective within the PV spectral 

range, and thus optical losses are expected to be minimal [4].  An effective concentration 

ratio of approximately 4.6+ is expected once the reflectivity of the material is taken into 

account.  Figure 3.4 shows the constructed optical sub-system used in this study.   

 

 

Figure 3.4: Constructed 7-facet reflector system 
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3.3 Summary 

A 7-facet line focussed reflector system was designed and constructed to satisfy the 

requirements of the optical model as discussed in Section 3.1.  The geometric concentration 

ratio of the optical sub-system used in this study is 4.83, but and effective concentration 

ratio of 4.6 is expected if an optical loss of 5% is assumed.  Upon further analysis of the 

optical model, it became clear that constructing an optical sub-system consisting of more 

than 10 reflector facets would not be financially viable.  The electrical sub-system is 

addressed in the following chapter which facilitates the analysis of the performance of the 

optical sub-system.  These results are discussed in Section 4.3.2.                 
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Chapter 4 

 

ELECTRICAL SUB-SYSTEM 

 

The primary goal of any LCPV system is to produce maximum electrical power.  This chapter 

outlines the basic electrical parameters associated with a LCPV system.  The chapter focuses 

on poly-crystalline silicon series connected cells and investigates various configurations 

aimed at maximizing electrical power.  I-V characteristics are measured under conventional 

(1-Sun) and concentration (4.83-Sun) conditions and the effect of concentration on various 

electrical parameters is discussed.         
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4.1  Photovoltaic Principles 

4.1.1  P-N Junction 

A silicon solar cell consists of a combination of p-type silicon and n-type silicon to form an 

electrical junction, called a p-n junction [1].  Figure 4.1 shows a basic illustration of an 

operational p-n junction.  P-type silicon is doped to contain positive holes that do not 

participate in bonding, whereas n-type silicon is doped to contain negative electrons that do 

not participate in bonding.  At the contact boundary positive holes migrate into the n-type 

silicon and negative electrons migrate into the p-type silicon.  This induces an electric field 

across the junction and a region that does not contain any mobile charge carriers, called the 

depletion region, develops.   

 

If a photon of sufficient energy is absorbed by the p-n junction an electron-hole pair will be 

separated and an electrical current, referred to as a photocurrent, will be produced as a 

result of the internal electric field.  It is important to note that a p-n junction is an electrical 

diode and the induced voltage will therefore produce a diode current opposite to the 

produced photocurrent.  The current produced by a solar cell is therefore generally less than 

the photocurrent.        

     

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Operation of a p-n junction 
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4.1.2 Ideal Solar Cell 

The operation of an ideal solar cell can be described in terms of a 2-diode model by the 

following equation [2]: 

 

         ( 
  

  ⁄   )     ( 
  

   ⁄   ) (4.1) 

 

   is the photocurrent generated by photons incident on the p-n junction.      and     are 

the saturation currents for each diode.    is the charge of an electron and   is the 

Boltzmann constant.    is the temperature of the solar cell.    and   are the current and 

voltage, respectively.  

 

The second term in equation 4.1 accounts for the diode current due to recombination in the 

quasi-neutral regions, while the third term in equation accounts for the diode current due to 

recombination in the depletion region.  The third term can be neglected when considering a 

typical silicon solar cell and equation then reduces to [2]: 

 

         ( 
  

  ⁄   ) (4.2) 

 

Equation 4.2 is referred to as the 1-diode model.  A graph of current vs. voltage is referred 

to as the I-V characteristic of a solar cell.  Figure 4.2 shows a simulated I-V characteristic of 

an ideal solar cell according to equation 4.2, with      .    
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Figure 4.2: I-V characteristic 

 

4.1.2.1 Short Circuit Current 

The short circuit current (   ) of a solar cell is defined as the measured current when there is 

no voltage across the terminals.  When the solar cell is in short circuit, the diode current is 

zero and thus the short circuit current should be equal to the photocurrent.  Substituting 

    into equation 4.2 yields [1]: 

 

        (4.3) 

 

Since the photocurrent is proportional to irradiance, the short circuit current is also 

proportional to irradiance. 
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4.1.2.2 Open Circuit Voltage 

The open circuit voltage (   ) of a solar cell is defined as the voltage across the terminals 

when no current flows.  Under these conditions the diode current will be equal and opposite 

to the photocurrent.  Substituting     into equation 4.2 yields [1]: 

 

 
    

  
 ⁄   (

  
   
⁄   )     ⁄   (

   
   
⁄   ) (4.4) 

 

Since the photocurrent is directly proportional to irradiance, the open circuit voltage has a 

logarithmic relationship with irradiance. 

 

4.1.2.3 Maximum Power Point 

The maximum power point (    ) of a solar cell is defined as the maximum product of 

current and voltage.  The current corresponding to the maximum power point is 

abbreviated as     , while the corresponding voltage is abbreviated as     .  The maximum 

power point is determined numerically once the I-V characteristic of a particular solar cell 

has been measured.  The maximum power point is of great significance as it is directly 

related to the efficiency ( ) of the solar cell [2] by the following equation: 

 
   

    
  ⁄  (4.5) 

 

  is the irradiance and   is the aperture area of the PV receiver. 

 

4.1.2.4 Fill Factor 

The fill factor (  ) of a solar cell is defined as the ratio of maximum power point to the 

product of short circuit current and open circuit voltage.   

 

    
    

      
⁄  (4.6) 
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Graphically, fill factor is equivalent to the rectangular area formed under the I-V 

characteristic by the maximum power point, as shown in Figure 4.2, divided by the 

rectangular area formed by the short circuit current and open circuit voltage.  For a good 

quality solar cell, the fill factor would approach 1 [3].  

 

4.1.3 Real Solar Cell 

The 1- and 2-diode models described in section 4.1.2 do not account for any power losses 

which may occur as a result of manufacturing imperfections and contact resistances.  The 1-

diode model of a real solar cell thus includes a shunt (   ) and series (  ) resistor to account 

for these losses as shown in Figure 4.3.  It is important to note that measured voltage ( ) is 

not equal to the voltage across junction (  ) due to the voltage drop across the series 

resistor.  The relationship between the measured voltage and junction is given by the 

following equation: 

 

          (4.7) 

 

With reference to Equation 4.7, the modified 1-diode model for a real solar cell is described 

by the following equation [4]: 

 

 
        ( 

 (     )
    )  

     
   

 (4.8) 

 

For a given I-V characteristic, all parameters in equation 4.8 can be extracted numerically 

using appropriate computer software [5]. 
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Figure 4.3: 1-diode model with shunt and series resistors. 

 

4.1.3.1 Shunt Resistance 

Electrical contact may exist between the front and rear contacts of a solar cell due to 

manufacturing imperfections, resulting in the development of a shunting path across the    

p-n junction.  A portion of the current may thus bypass the electrical load and flow directly 

between the front and rear contacts.  This reduction in measured current is modelled by the 

inclusion of a resistor parallel to the photocurrent and diode as shown in Figure 4.3.  At a 

constant measured voltage, a low shunt resistance will increase the contribution of the third 

term and consequently reduce the measured current according to Equation 4.8.  For this 

reason, the shunt resistance of a solar cell should be as high as possible to maximize power 

output.  A low shunt resistance reduces the fill factor and subsequently the maximum 

power point decreases [4].  The effect of low shunt resistance is illustrated by the simulated 

I-V characteristic as shown in Figure 4.4.  The fill factor of the I-V characteristic 

corresponding to a shunt resistance of 50Ω is 0.82, while the fill factor of the I-V 

characteristic corresponding to a shunt resistance of 5Ω is 0.74. 
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Figure 4.4: I-V characteristic showing the effect of shunt resistance 

 

4.1.3.2 Series Resistance 

The contact resistances of a real solar cell have a finite value which needs to be accounted 

for.  The resistance of the electrical contacts is modelled by the inclusion of a resistor in 

series with the electrical load as shown in Figure 4.3.  At a constant measured voltage, a 

high series resistance will increase the contribution of the second term and consequently 

limit the measured current according to equation 4.8. For this reason, the series resistance 

of a solar cell should be as low as possible to maximize power output [4].   

 

The effect of high series resistance is illustrated by the simulated I-V characteristic as shown 

in Figure 4.5.  The fill factor of the I-V characteristic corresponding to a series resistance of 

0.1Ω is 0.68, while the fill factor of the I-V characteristic corresponding to a shunt resistance 

of 0.3Ω is 0.42.  It is clear that a high series resistance reduces the maximum power point 

and consequently the fill factor is reduced according to Equation 4.6 [6].  This relationship 

between fill factor and series resistance is also present for high efficiency multi-junction 

cells [7].    
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Figure 4.5: I-V characteristic showing the effect of series resistance 

 

The power loss associated with the series resistor may also be described by the following 

equation: 

 

        
   (4.9) 

 

Equation 4.9 suggests that it is necessary to lower the current or series resistance of a PV 

cell to minimize the power loss.  Series resistance, which is often introduced during the 

manufacturing process, is difficult to control, but the PV cell current is easily decreased by 

reducing the active cell area.  The concept of increasing the maximum power point through 

the use of smaller, low current, PV is experimentally investigated in Section 4.3.      
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Consider a PV cell, with series resistance 0.3Ω, corresponding to the simulated I-V 

characteristic in Figure 4.5.  If the PV cell was divided into 2 parts and connected in series, 

the short circuit current of the 2-cell configuration would be half of the 1-cell configuration.  

Similarly, the open circuit voltage of the 2-cell configuration would be twice that of the 1-

cell configuration.  Since the power loss associated with the series resistor is proportional to 

  , it is expected that the power loss of the 2-cell configuration would be less than the 

power loss of the 1-cell configuration.  Figure 4.6 shows a simulated I-V characteristic of 1- 

and 2-cell configuration corresponding to a series resistance of 0.3Ω per cell.  The fill factor 

of the 2-cell configuration is 0.61, while the fill factor of the 1-cell configuration is 0.42.  

Since the product of short circuit current and open circuit voltage remains unchanged, the 

maximum power point is proportional to the fill factor according to equation 4.6 and 

subsequently the maximum power point of the 2-cell configuration is greater than the 

maximum power point of the 1-cell configuration.   

   

Figure 4.6: I-V characteristics or 1- and 2-cell configuration with series resistance 0.3Ω 
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It is important to note that if the series resistance is sufficiently low the difference in fill 

factor may not be as significant.  Figure 4.7 shows the simulated I-V characteristics of a 2- 

and 1-cell configuration corresponding to a series resistance of 0.05 per cell.  The fill factor 

of the 2-cell configuration is 0.79, while the fill factor of the 1-cell configuration is 0.75.        

Figure 4.7: I-V characteristics or 1- and 2-cell configuration with series resistance 0.05Ω 

 

4.1.4 Concentration Effects 

Concentrated irradiance has numerous effects on the electrical parameters of a solar cell.  

The short circuit current and open circuit voltage are increased under concentration, but 

power losses associated with series resistance may become more significant. 

 

4.1.4.1 Short Circuit Current 

The short circuit current, which is proportional to irradiance, increases by a factor equal to 

the concentration ratio ( ) and is given by the following equation [4]: 

 

    
      

  (4.10) 

 

   
  is the short circuit current under concentration. 

 

Figure 4.6: I-V characteristics or 1- and 2-cell configuration with series resistance 0.3Ω 
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4.1.4.2 Open Circuit Voltage 

The open circuit voltage, which has a logarithmic relationship with irradiance, is given by the 

following equation [4]: 

 

    
     

     ⁄    ( ) (4.11) 

 

   
  is the open circuit voltage under concentration. 

 

4.1.4.3 Series Resistance 

Owning to the high currents associated with a LCPV system, series resistance may be more 

significant under concentration [8, 9].  The increased current of the PV cell under 

concentration significantly increases the contribution of the second term in equation 4.7 

and subsequently the measured current decreases as discussed in Section 4.1.3.2.  This 

effect is illustrated by a simulated I-V characteristic [10] corresponding to a series resistance 

of 0.1Ω as shown in Figure 4.8.  The I-V characteristic corresponding to 1X concentration has 

a fill factor 0.68, while the I-V characteristic corresponding to 3X concentration has a fill 

factor of 0.44.   
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Figure 4.8: I-V characteristic showing the effect of series resistance under concentration 

 

With reference to the I-V characteristics in Figure 4.8, the maximum power point should 

increase by a factor of 3 if the fill factor was unchanged under concentration according to 

Equation 4.8.  However, the maximum power point only increased by a factor of 1.85 due to 

the reduced fill factor.  As discussed in Section 4.1.3.2, the power loss associated with the 

series resistor is given by Equation 4.9.  However, the power loss under concentration 

conditions is greater than the power loss under conventional conditions by a factor equal to 

the square of the concentration ratio as given by the following equation:     

 

         
   
   (4.11) 

 

 For this reason, the difference in fill factor between the 1- and 2-cell configurations, as 

discussed in Section 4.1.3.2, is significant even at low series resistance.  Figure 4.9 shows the 

simulated I-V characteristics of a 2- and 1-cell configuration under 3X concentration 

corresponding to a series resistance of 0.05.   The fill factor of the 2-cell configuration is 

0.73, while the fill factor of the 1-cell configuration is 0.62.  In accordance with Equation 4.9, 

the maximum power point of the 2-cell configuration is significantly greater than that of the 

1-cell configuration.  This indicates that it may be necessary to use small, low current PV 

cells to maximize the power output of a LCPV system.                     
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Figure 4.9: Concentrated I-V characteristics of 1- and 2-cell configuration with series resistance 

0.05Ω 

 

4.1.5 Connecting PV cells 

A collection of PV cells connected in either series or parallel is called a PV cell string.  When 

PV cells are connected in series the open circuit voltage of the PV receiver (   
 ) is equivalent 

to the product of the number of cells in the PV receiver ( ) and the open circuit voltage of a 

single cell (   
 ) . 

 

    
      

  (4.10) 

 

When PV cells are connected in parallel the short circuit current of the PV receiver (   
 ) is 

the product of the number of cells in the PV receiver ( ) and the short circuit current of a 

single cell (   
 ) . 

 

    
      

  (4.11) 

 

It may also be desirable to include a combination of series and parallel connections to meet 

specific electrical requirements.   
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Three different PV receivers, namely 4-, 6- and 8-cell configurations, of equal total cell area 

were manufactured for the purpose of this study.  The cells were bonded to an aluminium 

sheet using a phase change material [11] as shown in Figure 4.10.   

 

 
 
 
 
 
 
 
 
 
 

Figure 4.10: 6-Cell PV receiver 
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4.2 1-Sun I-V Characteristics       

The following experiment aims to determine the short circuit current, open circuit voltage, 

fill factor and the maximum power point for each PV receiver under a geometric 

concentration ratio of 1 (1-sun conditions). 

 

4.2.1 Experimental   

Each PV receiver was mounted on a 2-axis tracker.  An I-V tracer was used to measure the   

I-V characteristics of each PV receiver under 1-sun conditions.  All measurements were 

conducted on clear days in February 2012.  Current measurements were normalized to a 

direct irradiance of 1000 W/m².   The PV receiver temperature was 25±3°C for all 

measurements and for this reason the effect of temperature is considered to be negligible.   

 

4.2.2 Results   

Figure 4.10 shows the I-V characteristics of the 4-, 6- and 8-cell PV receiver under standard 

conditions.  The 4-cell PV receiver has the highest short circuit current of 1.13 A, while the 8-

cell PV receiver has the highest open circuit voltage of 4.73 V.  Table 4.1 lists a comparison 

of the electrical parameters of each PV receiver.  Shunt and series resistances are extracted 

numerically.   
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Figure 4.11: I-V characteristics of the 8-, 6- and 4-cell under 1-sun conditions at direct irradiance of 
1000W/m² 

 

Table 4.1: I-V parameters of the 8-, 6- and 4-cell receivers 

 4-Cell 6-Cell 8-Cell 

    1.13±0.01 A 0.72±0.01 A 0.54±0.01 A 

    2.28±0.05 V 3.51±0.05 V 4.73±0.05 V 

     1.62±0.05 W 1.48±0.04 W 1.67±0.04 W 

   0.63±0.02 0.59±0.02 0.65±0.02 

   0.01 Ω 0.07 Ω 0.04 Ω 

    13 Ω 12 Ω 51 Ω 

  

The 4-cell PV receiver, having the largest cell area per cell, has the highest short circuit 

current, while the 8-cell PV receiver, having the smallest cell area per cell, has the lowest 

short circuit current.  It should also be noted that the short circuit current of the 4-cell PV 

receiver is approximately 1.5 times greater than the short circuit current of the 6-cell 

receiver.  This result is expected since the area per cell of the 4-cell PV receiver is 1.5 times 

greater than that of the 6-cell PV receiver.  A similar relationship is also valid when 

comparing the 6-cell PV receiver to the 8-cell PV receiver.               
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The 8-cell PV receiver has the highest open circuit voltage, while the 4-cell has the lowest 

open circuit voltage.  The PV receiver with the most individual cells will have the highest 

open circuit voltage as discussed in Section 4.1.5.  It should also be noted that the open 

circuit voltage of the 8-cell is approximately 1.35 times greater than the open circuit voltage 

of the 6-cell PV receiver.  This result is expected since the 8-cell PV receiver has 

approximately 1.33 times more individual cells than the 6-cell PV receiver.  A similar 

relationship is also valid when comparing the 6-cell PV receiver to the 4-cell PV receiver.  

 

The 8-cell PV receiver has the highest maximum power point of 1.67 W, while the 6-cell PV 

receiver has the lowest maximum power point of 1.48 W.  The relationship between fill 

factor and maximum power point, as discussed in Section 4.1.2.4, is clearly illustrated as the 

8-cell PV receiver has the highest fill factor and the 6-cell PV receiver has the lowest fill 

factor.  Ideally, it is expected that all the PV receivers would produce similar maximum 

power as the total cell area of each PV receiver is the same.  The 4-cell PV receiver has a 

similar maximum power point to the 8-cell PV receiver, but the 6-cell PV receiver has a 

lower maximum power point when compared to the 4- and 8-cell PV receivers.  The 6-cell 

PV receiver has the highest series resistance and the lowest shunt resistance which provides 

an explanation for the low fill factor and maximum power point in accordance with Sections 

4.1.3.1 and 4.1.3.2.       

 

According to these results there is no clear evidence that reducing the individual cell area, 

and consequently the short circuit current, will result in an increased maximum power point 

as proposed in Section 4.1.4.3.  The effect of series resistance under concentration will be 

discussed in Section 4.3.      
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4.3 4.83-Sun I-V Characteristics       

This experiment aims to determine the short circuit current, open circuit voltage, fill factor 

and the maximum power point for each receiver under a geometric concentration ratio of 

4.83 (4.83-sun conditions).  These parameters are compared to those measured under 

standard conditions to assess the performance of the LCPV system. 

 

4.3.1 Experimental   

The LCPV system, as described in Chapter 3, was mounted on a 2-axis tracker and each PV-

receiver was alternately inserted.  An I-V tracer was used to measure the I-V characteristics 

of each PV receiver under concentrator conditions.  All measurements were conducted on 

clear days in February 2012.  Current measurements were corrected to a direct irradiance of 

1000 W/m².  Voltage measurements were corrected for temperature to 25°C using a 

temperature co-efficient of -0.002 V/°C per cell [12].   

   

4.3.2 Results   

Figure 4.11 shows the I-V characteristics of the 4-, 6- and 8-cell PV receiver under 4.83-sun 

conditions.  The 4-cell PV receiver has the highest short circuit current of 5.28 A, while the 8-

cell PV receiver has the highest open circuit voltage of approximately 4.88 V.  Table 4.2 lists 

a comparison of the electrical parameters of each PV receiver under 4.83-sun conditions.   
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Figure 4.12: I-V characteristics of the 8-, 6- and 4-cell under 4.83-sun conditions at direct irradiance 
of 1000W/m² 

 

Table 4.2: I-V parameters of the 8-, 6- and 4-cell receivers 

 4-Cell 6-Cell 8-Cell 

    5.28±0.01 A 3.38±0.01 A 2.56±0.01 A 

    2.43±0.05 V 3.61±0.05 V 4.88±0.05 V 

     5.78±0.20 W 6.50±0.14 W 7.13±0.11 W 

   0.45±0.02 0.53±0.01 0.57±0.01 

   0.04 Ω 0.03 Ω 0.05 Ω 

    21 Ω 28 Ω 38 Ω 

 

Once again, the 4-cell, having the largest cell area per cell, has the highest short circuit 

current, while the 8-cell, having the smallest cell area per cell, has the lowest short circuit 

current.  The short circuit current of the 4-cell PV receiver is approximately 1.5 times greater 

than the short circuit current of the 6-cell PV receiver.  A similar relationship is also valid 

when comparing the 8-cell PV receiver to the 6-cell PV receiver.   
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The 8-cell PV receiver has the highest open circuit voltage, while the 4-cell has the lowest 

open circuit voltage.  The PV receiver with the most individual cells will generally have the 

highest open circuit voltage as discussed in Section 4.1.5.  The open circuit voltage of the 8-

cell is approximately 1.35 times greater than the open circuit voltage of the 6-cell PV 

receiver.  A similar relationship is also valid when comparing the 6-cell PV receiver to the 4-

cell PV receiver. These results identical are to those obtained under 1-sun conditions as 

discussed in Section 4.2.2. 

 

The 8-cell PV receiver has the highest maximum power point of 7.13 W, while the 4-cell PV 

receiver has the lowest maximum power point of 5.78 W.  The 8-cell PV receiver has the 

highest fill factor and the 4-cell PV receiver has the lowest fill factor.  The relationship 

between maximum power point and fill factor is once again confirmed as discussed in 

Section 4.1.2.4.  It is clear that the best performing PV receiver, in terms of maximum power 

point and fill factor, is the 8-cell PV receiver (        ), while the worst performing PV 

receiver is the 4-cell PV receiver (        ).  The 6-cell PV receiver (        )  has an 

intermediate maximum power point and fill factor with respect to the 4- and 8-cell PV 

receivers.    It is important to note that each PV receiver has approximately the same series 

resistance and thus the reduced maximum power point and fill factor of the 4- and 6-cell PV 

receivers should not be attributed directly to series resistance.  However, the amplification 

of series resistance at higher currents significantly reduces the maximum power point and 

fill factor of the 4- and 6-cell PV receivers.  Figure 4.13 shows the maximum power point and 

fill factor of each PV receiver under concentration. 
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Figure 4.13: Maximum power point and fill factor for the 4-, 6- and 8-cell receivers under 
concentration 

 

The results indicate that a PV receiver with a high short circuit current will have a lower fill 

factor than a PV receiver with a low short circuit current.  This observation has been 

discussed and theoretically modelled in Section 4.1.4.3.  These results clearly indicate that it 

is necessary to lower the short circuit current, through the use of smaller PV cells, to 

maximize the power output under concentration.     

 

In order to assess the performance of the optical sub-system it is necessary to compare the 

electrical parameters of each PV receiver under standard and concentration conditions.  

Figures 4.14 – 4.16 show the I-V characteristics under standard and concentration 

conditions for each PV receiver.  Table 4.3 shows a comparison of the electrical parameters 

under 1-sun and 4.83-sun conditions as well as the effective concentration ratio calculated 

from Equation 4.10. 
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Figure 4.14: I-V characteristic of 4-cell PV receiver under 1-sun and 4.83-sun conditions 

 

 

Figure 4.15: I-V characteristic of 6-cell PV receiver under 1-sun and 4.83-sun conditions 
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Figure 4.16: I-V characteristic of 8-cell PV receiver under 1-sun and 4.83-sun conditions 
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Table 4.3: I-V parameters and effective concentration ratio of the 4-, 6- and 8-cell receivers 

 
4-Cell 

1-Sun 4.83-Sun 

    1.13 A 5.28 A 

    2.28 V 2.43 V 

     1.62 W 5.78 W 

   4.67 

 
6-Cell 

1-Sun 4.83-Sun 

    0.72 A 3.38 A 

    3.51 V 3.61 V 

     1.48 W 6.50 W  

   4.69 

 
8-Cell 

1-Sun 4.83-Sun 

    0.54 A 2.56 A 

    4.73 V 4.88 V  

     1.67 W 7.13 W 

   4.74 

 

In general, the short circuit current of each PV receiver increased by a factor approximately 

equal to the concentration ratio as predicted by Equation 4.8, while the open circuit voltage 

increased only slightly as predicted by Equation 4.9.  The effective concentration ratio is of 

the order of 4.7, which corresponds well with the geometric concentration ratio of 4.83 as 

discussed in Chapter 3.  A loss of only 2.5% is thus associated with the optical sub-system 

and indicates satisfactory optical sub-system design.   
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4.4 Summary 

Smaller, low current, PV cells are capable of reducing the power losses associated with 

series resistance under concentration.  The experimental 8-cell PV receiver had a maximum 

power point of 7.13W, which corresponds to a 23% improvement compared to the 4-cell PV 

receiver.  These results indicate that the use of low current PV cells is necessary to minimize 

the effect of series resistance and to consequently maximize the power produced under 

concentration.  The following chapter investigates the various parameters and conditions 

that influence the temperature of a PV receiver within LCPV system.  It also evaluates the 

use a thermal management system to limit the temperature of the PV receiver. 
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Chapter 5 

 

THERMAL SUB-SYSTEM 

 

Efficient thermal management is an essential component of LCPV system design.  The high 

temperatures associated with a LCPV system significantly reduces the maximum power 

produced.  The PV cells used in LCPV systems are also placed under high thermal stress 

which may result in degradation.    This chapter outlines the development of a thermal 

model aimed at quantifying the energy absorbed and dissipated by various mechanisms in a 

LCPV system.  The effect of environmental conditions, such as irradiance and wind velocity, 

on PV receiver temperature is also investigated.  The benefits of a heat sink are investigated 

and the chapter is concluded with a thermal stress evaluation.   
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5.1 Temperature Effects 

The high temperatures associated with LCPV systems significantly reduce the maximum 

power of the LCPV system.  The reduction in power is predominantly attributed to the 

decrease of voltage as the temperature increases. 

 

5.1.1 Intrinsic Carrier Concentration       

The saturation current (   ), as discussed in Chapter 4, is proportional to the intrinsic carrier 

concentration (  ) of the semiconductor material [1]. 

 

        (5.1) 

 

The intrinsic carrier concentration is, however, dependent on temperature and may be 

calculated by the following equation [1]: 

 

           
 

 ⁄ (      ⁄ )
 

 ⁄

 
   

   ⁄  (5.2) 

 

   and    are the masses of electrons and holes respectively.    is the Boltzmann constant 

and   is Planck’s constant.    is temperature and    is the  band gap.   

 

The temperature dependence described by Equation 5.2 consequently leads to an increase 

in the saturation current as temperature increases.   In addition, temperature dependent 

band gap narrowing also increases the intrinsic carrier concentration as temperature 

increases.  The following equation describes the band gap of a semiconductor as a function 

of temperature [1]: 

 

        
   

   
 (5.3) 

 

    is the band gap at absolute zero.    and   are constants specific to the semiconductor 

material.   
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Consequently, the band gap of a semiconductor decreases significantly when the 

temperature increases and thus the intrinsic carrier concentration is expected to increase in 

accordance with Equation 5.2.  Figure 5.1 shows simulated I-V characteristics at high (70°C) 

and low (20°C) temperatures.      

 

 

Figure 5.1: Simulated I-V characteristics showing the effect of temperature 
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5.1.2 Open Circuit Voltage 

Equation 5.4 suggests that an increased saturation current would decrease the open circuit 

voltage. 

   

       
 ⁄   (

   
   

⁄   ) (5.4) 

 

Equation 5.4 may also be re-arranged to solve for short circuit current: 

 

         
    

  
⁄  (5.5) 

 

However, short circuit current is only slightly dependant on temperature and this 

dependence may be neglected under typical operating conditions such that [1]: 

 

 
    
  

   (5.6) 

 

Alternatively, differentiating Equation 5.3 yields: 

 

     
  

 

   
 ⁄         

 ⁄

 
 

(5.7) 

 

  is a function of temperature. 

 

For silicon at 300K, Equation 5.7 corresponds to approximately -2.3mV/°C [2].  Typically, an 

increase in temperature significantly decreases the open circuit voltage, while the short 

circuit current only increases slightly as shown in Figure 5.1.  The overall result is a 

noticeable decrease of maximum power (-0.4%/°C). 
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5.2  Thermal Model 

 The development and experimental evaluation of a thermal model is necessary to fully 

understand the energy transfer mechanisms associated with a LCPV system.  The thermal 

model may then be used to predict the operating temperatures and assess the thermal 

management requirements of the LCPV system.   

    

5.2.1  Development 

The thermal model is based on the principle of conservation of energy [3], which states that 

energy may never be created or destroyed, only transformed.  A LCPV system has only one 

form of incident energy, namely irradiance.  However, the LCPV system may dissipate 

energy in various ways, including convection, radiation and electrical work.  A small amount 

of energy may also be lost through reflection from the PV cell surface.  Owing to the anti-

reflective property of PV cells, energy lost through reflection is assumed to be negligible.  

Figure 5.2 shows the energy absorbed and dissipated in a LCPV system.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Energy absorption and dissipation in a LCPV system 
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The energy absorbed and dissipated in a LCPV system may be described by the following 

equations: 

 

       (5.8) 

             (5.9) 

 

   is the total energy absorbed per unit time and    is the total energy dissipated per unit 

time.  The parameters   ,   ,    and    represent the energy absorbed and dissipated per 

unit time through concentrated irradiance, convection, radiation and electrical power 

output, respectively.   

 

  ,   ,    and    may be determined by the following equations:   

 

        (5.10) 

              (5.11) 

          
    

   (5.12) 

       (5.13) 

 

  is the concentration factor associated with the LCPV system and   is the direct irradiance.  

  is the area of the PV receiver.    is the convective transfer co-efficient.     is the PV 

receiver temperature and    is the ambient temperature.    and   are the emissivity of the 

PV receiver and Stefan-Boltzmann constant, respectively.    is the voltage over the electrical 

load and   is the current flowing through the electrical load.   

 

Under certain conditions, such as constant irradiance and ambient temperature, the PV 

receiver temperature should remain relatively constant over a period of time.  This indicates 

that the LCPV system has reached steady state conditions.  During steady state conditions 

the energy absorbed must be equal to the energy dissipated.       
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For this reason, under steady state conditions: 

 

       (5.12) 

             (5.14) 

                       
    

      (5.15) 

 

Equation 5.15 is the driving relationship behind all thermal analysis in this chapter. 

 

Owing to the high thermal conductivity of the materials used, the temperature of the front 

surface of the PV receiver is assumed to be equal to the temperature of the back surface of 

the PV receiver.  The emissivity of the aluminium used in the PV receiver design is 0.8.  The 

emissivity of a solar cell is generally greater than 0.8 [9].  The emissivity of the entire PV 

receiver is therefore assumed to be 0.8. 

 

5.2.2 Validation 

An experiment was designed to validate the thermal model described in 5.1.1.  The 

objective of the experiment was to quantify the energy absorbed and dissipated.  For the 

thermal model to be validated the energy dissipated would need to be equal to the energy 

absorbed.     

 

5.2.2.1 Convective Transfer Co-efficient 

All parameters of the thermal model, as described by equation 5.15, can be easily 

determined or measured, except the convective transfer co-efficient  .  The convective 

transfer co-efficient is dependent on the geometry of the system (eg. vertical or horizontal 

air flow) and various other air properties such as air flow velocity and viscosity.  The 

following equation can be used to determine the convective transfer co-efficient [4] for 

laminar air flow over a flat horizontal plate: 

 

 
  

  ̅̅ ̅̅   
 

⁄  
(5.16) 
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   is the thermal conductivity of air and   is the length of the plate in the direction of air 

flow.    ̅̅ ̅̅  is the average Nusselt number and can determined by the following equation:     

 

   ̅̅ ̅̅           ⁄     ⁄  

 

(5.17) 

   is the Reynolds number and    is the Prandtl number.  Equation 5.17 is valid when 

      .     and    can be determined by the following equations: 

 

      
 ⁄  (5.18) 

     
 ⁄  

 

(5.19) 

  is the velocity of the air flow and   is the length of the plate in the direction of air flow.    

is the kinematic viscosity and   is the thermal diffusivity.     

 

The complex and dynamic geometry associated with a 2-axis tracker mounted LCPV system 

and the high dependence on environmental conditions makes calculation of the convective 

transfer co-efficient complicated [5].  For this reason, it is advantageous to calculate the 

convective transfer co-efficient by considering the change in air temperature across the PV 

receiver.  The energy absorbed by the air is equivalent to the energy dissipated by the PV 

receiver through convection.  The energy dissipated through convection may thus be 

calculated by the following equation: 

 

     ̇            

 

(5.19) 

 ̇ is the air mass flow rate.   is the specific heat capacity of air.       is the temperature of 

the air after passing over the PV receiver and     is the ambient temperature. 
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The convective transfer co-efficient may then be calculated by the following equation: 

 

   
  

   ⁄  (5.20) 

 

   is the temperature difference between the PV receiver and the ambient air and   is the 

area of the PV receiver.  

 

5.2.2.2 Experimental  

The LCPV system, consisting of the 7 facet reflector and a 6-cell PV receiver, was housed in 

an insulated wooden box to restrict energy transfer with the environment.  This creates a 

control volume insulated from the environment in which the thermal model could be 

validated.  Two panel fans were used to simulate air flow of 1.2 m/s across the PV receiver. 

Two glass sheets were mounted within the wooden box to ensure direct and parallel air 

flow.  The mass flow rate ( ̇) was approximately 0.05 kg/s.  Figure 5.3 shows a simplified 

illustration of the thermal model validation experiment.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  Thermal model validation experimental setup 
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Owing to reflective losses associated with the glass sheets, the concentration factor ( ) 

could not be calculated directly from the results discussed in Chapter 4.  Instead, the 

concentration factor needed to be calculated through the reflectance of glass as described 

by the following Fresnel equations [6]: 

 

 

 

   [
                   

                   
⁄ ]

 

 

   [
                   

                   
⁄ ]

 

 

 

(5.21) 

 

   is the reflectance when light is polarised perpendicular to the plane of incidence, while 

   is the reflectance when light is polarised parallel to the plane of incidence.     is the 

refractive index of the medium before the refractive interface is reached and    is the 

refractive index of the medium after the refractive interface.  The refractive index of air and 

glass is assumed to be 1 and 1.5 respectively.     and    should be averaged in the case of 

unpolarised light.  As shown in figure 5.3, the front and back surfaces of the PV receiver 

receive irradiance and a combined concentration factor of 4.48 was calculated.                

 

Four K-type thermocouples were used to measure air temperatures within the LCPV system.  

An additional K-type thermocouple was used to measure PV receiver temperature.  

 

The LCPV system was mounted on a two-axis tracker.  The PV receiver was operated in open 

circuit, thus     .  The experiment was conducted on a clear day in January 2012 and 

measurements were averaged over 2-minute intervals.  The experiment was conducted for 

1 hour.   
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5.2.2.3 Results   

Figure 5.4 shows various system temperatures and irradiance over the experimental period.  

The PV receiver temperature was relatively constant over the last 10 data points, 

corresponding to the last 20 minutes of the experiment.  The last 10 data points thus 

indicated steady state conditions and were averaged to perform the validation analysis of 

the thermal model.   Quantification of these averaged values is shown in Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4: Graph showing irradiance and various LCPV system temperatures 
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Table 5.1: Thermal model validation analysis 

Irradiance 987±6 W/m² 

Concentration Factor 4.48 

PV Receiver Area 0.025±0.001 m² 

Total incident power 111±5 W 

PV Cell temperature 72.0±0.2°C 

Radiation power dissipated 13±0.1 W 

Temperature In (   ) 31.1±0.2°C 

Temperature Out (    ) 33.0±0.3°C 

Air temperature difference 1.9±0.3°C 

Air flow velocity 1.2±0.05 m/s 

Convection power dissipated 101±18 W 

Total dissipated power 113±18 W 

 
 
 

The total dissipated power corresponds to the total incident power within measurement 

uncertainty.  Despite the high uncertainty of the total power dissipated, the shaded values 

in Table 5.1 are still within the same order, suggesting that the thermal model will be an 

effective method of estimating the operating temperatures of a LCPV system.  A convective 

transfer co-efficient of 49±9 W/m².K corresponds to the data listed in Table 5.1.  However, 

the convective transfer co-efficient should be re-calculated using steady state data points at 

the beginning of each new experimental configuration due to its high dependence on 

environmental conditions and geometrical orientation.  The thermal model allows 

convenient empirical calculation of the convective transfer co-efficient in the following 

sections of this chapter.   

 

 

 



64 
 

 

5.3 Environmental Conditions 

It is clear from the thermal model that environmental factors, such as irradiance, wind 

velocity and ambient temperature, would impact PV receiver temperatures within a LCPV 

system.  A series of experiments were conducted to analyse the effect of these 

environmental factors on PV receiver temperatures.  The solve function in Mathematica was 

used to predict the PV receiver temperature in accordance with the thermal model.   The 

user inputs irradiance and ambient temperature and the solve function calculates the 

predicted PV receiver temperature according to Equation 5.15.  As mentioned before, the 

convective transfer co-efficient needs to be re-calculated at the beginning of each new 

experimental configuration and the model should then be adjusted accordingly.   

 

5.3.1 Irradiance  

Different irradiance conditions should not have any observable effect on the convective 

transfer co-efficient of the LCPV system at constant temperatures.  Varying irradiance only 

disrupts the energy balance described by the thermal model.  An increase in irradiance 

should result in higher PV receiver temperatures, while a decrease in irradiance should 

result in lower PV receiver temperatures.  The relevant terms in equation 5.15 are 

highlighted below. 

 

  ⏟
        

     (   ⏟
        

   )      (   
 ⏟

        

   
 )     

   

5.3.1.1 Experimental  

The LCPV system was housed within the same insulating enclosure and two panel fans 

provided air flow of 1.2m/s as described in section 5.1.2.2.  A K-type thermocouple was used 

to measure PV receiver temperature.  Irradiance screens were placed over the LCPV system 

at various times throughout the experiment to decrease the irradiance incident on the PV 

receiver.   

 

 



65 
 

The LCPV system was mounted on a two-axis tracker.  The PV receiver was operated in open 

circuit, thus     .  The experiment was conducted on a clear day in February 2012 and 

measurements were averaged over 2-minute intervals.  The experiment was conducted for 

3 hours 20 min.         

 

5.3.1.2 Results 

Figure 5.5 shows the PV receiver temperature under varying irradiance conditions.  It clearly 

illustrates the dependence of receiver temperature on irradiance.  The PV receiver 

temperature is approximately 75°C when the irradiance is above 900 W/m².  However, the 

PV receiver temperature decreases significantly to approximately 45°C when the irradiance 

drops to below 300 W/m².  A convective transfer co-efficient of 43 W/m².K was calculated 

according to Equation 5.15 for this experimental configuration. As can be seen from Figure 

5.5, the thermal model predicts temperatures that correspond closely to the measured 

temperatures.  The only noticeable errors associated with the thermal model occur as the 

irradiance is changed.  These errors are unavoidable as thermal model assumes steady state 

conditions and does not take into account the time taken for the PV receiver to reach steady 

state conditions.  In general, the thermal model predicts temperatures that are within 2% of 

the measured temperatures.    
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Figure 5.5: Graph showing dependence of PV receiver temperature on irradiance 
 

5.3.2 Wind Velocity 

Theoretically, the convective transfer co-efficient is dependent on the air velocity over the 

surface.  According to equations 5.15, 5.16 and 5.17,      ⁄  for laminar air flow over a 

horizontal plate.   A higher wind velocity should result in a higher convective transfer co-

efficient and subsequently a lower PV receiver temperature according to the thermal model.  

The relevant terms in equation 5.15 are highlighted below. 
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5.3.2.1 Experimental  

The LCPV system was housed within the same insulating enclosure as described in Section 

5.1.2.2.  A K-type thermocouple was used to measure PV receiver temperature.   

 

The LCPV system was mounted on a two-axis tracker.  The PV receiver was operated in open 

circuit, thus   =0.  The experiment was conducted on a clear day in January 2012 and 

measurements were averaged over 2-minute intervals.  The experiment was conducted for 

4 hours.   

 

5.3.2.2 Results  

Figure 5.6 shows the PV receiver temperature as the air velocity was decreased periodically 

throughout the experiment.  The PV receiver temperature is approximately 70°C when the 

air velocity is 1.2 m/s.  However, the PV receiver temperature increases significantly to 

approximately 90°C when the air velocity is reduced to 0.6 m/s.   For each air velocity a 

separate convective transfer co-efficient was calculated and the thermal model was 

adjusted accordingly.  The convective transfer co-efficient corresponding to each air velocity 

is shown in Table 5.2.       
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Figure 5.6: Graph showing the dependence of PV receiver temperature on air velocity 

 

 

Table 5.2: Convective transfer co-efficient calculation 

Air velocity Convective transfer co-efficient 

1.2 m/s 47.9 W/m².K 

1.0 m/s 44.0 W/m².K 

0.8 m/s 38.5 W/m².K 

0.6 m/s 32.7 W/m².K 
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With reference to equations 5.16 - 5.19, it may be assumed that the convective transfer co-

efficient has the form      
 .  The value of   may be determined graphically by the 

gradient of the         vs.         graph as shown in Figure 5.7. 

 

 
Figure 5.7:         vs.         graph corresponding to data in Table 5.2 

 

 

According to Figure 5.7, the data in Table 5.2 corresponds to a   value of approximately 

0.55.  The relationship      
     corresponds closely to the theoretical relationship of 

     
     for laminar flow over a horizontal plate. 
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5.3.3 Ambient Temperature 

A dedicated experiment to evaluate the effect of ambient temperature on PV receiver 

temperature was not conducted.  Instead, the effect of ambient temperature was evaluated 

through the experiments focussing on irradiance and wind velocity.  Considering Figures 5.4, 

5.5 and 5.6, it is clear that PV receiver temperature is also strongly dependant on ambient 

temperature.  PV receiver temperature increases as the ambient temperature increases.  

The reason for this behaviour can easily be explained through the thermal model as 

described by Equation 5.15.  Assuming all other parameters, such as irradiance and 

convective transfer co-efficient, remain constant, the PV receiver temperature would need 

to increase as ambient temperature increased in order to maintain the energy balance.  PV 

receiver temperature decreases as the ambient temperature decreases for the same reason.  

The relevant terms in equation 5.15 are highlighted below. 
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5.4 Electrical Power   

The effect of electrical power output has not yet been discussed or evaluated.  However, it 

is clear from the thermal model that transformation of energy into electrical work would 

disrupt the energy balance.  Energy dissipated from the LCPV system in the form of electrical 

power would result in less energy being dissipated by convection and radiation.  The 

reduction of convection and radiation can only be achieved through a decrease of PV 

receiver temperature, assuming irradiance, ambient temperature and convective transfer 

co-efficient remain constant.  For this reason, the PV receiver temperature should be lower 

when it performs electrical work.  The relevant terms in equation 5.15 are highlighted 

below. 

 

       (   ⏞
        

   )      (    ⏞
        

   
 )    ⏟

        

 

 

5.4.1 Experimental 

The LCPV system was housed within the same insulating enclosure as described in section 

5.1.2.2.  A K-type thermocouple was used to measure PV receiver temperature.  Owing to 

spectral changes associated with the glass sheets used in the insulating enclosure, the 

maximum power output of the 6-cell PV receiver was reduced.  In Chapter 4 the maximum 

power output of the 6-cell receiver was approximately 6.5 W.  However, only 1 W was 

extracted by electrical work during this experiment.  

 

The LCPV system was mounted on a two-axis tracker.  The PV receiver was operated in open 

circuit (  =0) for 20 minutes.  The PV receiver was then connected to a resistor, 

approximately matched to the maximum power point, to allow it to perform electrical work 

for 10 minutes.  The PV receiver was operated in open circuit for the remainder of the 

experiment.  The experiment was conducted on a clear day in February 2012 and 

measurements were averaged over 2-minute intervals.  The experiment was conducted for 

50 minutes.  The irradiance was relatively constant throughout the experiment (900 ± 20 

W/m²)   
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5.4.2 Results 

Figure 5.8 shows the PV receiver temperature when electrical power is extracted.  The 

energy balance is only slightly disrupted by the extraction of 1 W electrical power and the 

decrease in PV receiver temperature is only 2°C.  However, the effect of electrical power 

extraction becomes more apparent when the difference between PV receiver temperature 

and ambient temperature is considered.   

 

 
Figure 5.8: Graph showing PV receiver temperature when 1 W electrical power is extracted 

 

According to the thermal model described by equation 5.15, the temperature difference 

should be constant when the irradiance, and all other parameters, is relatively constant.  

However, the temperature difference decreases slightly when electrical power is extracted, 

indicating that the energy balance has been disrupted.  This observation is consistent with 

the thermal model.   
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The convective transfer co-efficient of 42.9 W/m².K was calculated for this experiment.  The 

thermal model once again predicts PV receiver temperatures that correspond closely to the 

experimental data.  Figure 5.9 shows the predicted PV receiver temperature if 6.5 W of 

electrical power was extracted as measured in Chapter 4.  The decrease in PV receiver 

temperature is much more significant when the electrical power extracted is greater. 
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Figure 5.9: Graph showing modelled PV receiver temperature when 6.5 W electrical 

power is extracted 
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5.5 Heat Sink 

The primary function of a heat sink in a LCPV system is to decrease the temperature of the 

PV receiver.  This is achieved by providing a larger area for convection to occur.  The 

relevant terms in equation 5.15 are highlighted below.   
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5.5.1 Design 

Figure 5.10 shows a basic illustration of the heat sink used in this study.  The heat sink is 

manufactured from aluminium and has 25 fins.  The convective area for the heat sink 

configuration is approximately 0.125 m², while the convective area for the configuration 

without the heat sink is 0.05 m².   

 

 Figure 5.10: Simplified illustration of heat sink 
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Assuming that the irradiance is constant and that energy dissipated by radiation is 

unaffected, the energy dissipated through convection should be equal for both 

configurations.  

 

                         

 

(5.22) 

   is the convective area of the configuration without the heat sink, while    is the 

convective area of the configuration with the heat sink.  Therefore,         .     

 

 The relationship may be further simplified by the assumption that the convective transfer 

co-efficient is unchanged by the introduction of a heat sink.   

 

             (5.23) 

                (5.24) 

            (5.25) 

 

This basic theoretical analysis of both configurations shows that the temperature difference 

of the configuration without the heat sink is 2.5 times greater than the configuration with 

the heat sink.   

 

Unfortunately, a heat sink is not 100% efficient.  The fins of a heat sink have a finite length 

which gives rise to a temperature gradient along each fin.  Practically, the tip of the fin has a 

lower temperature than the base of the fin.  This results in non-uniform convection of 

energy along the fin.   
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The efficiency of a heat sink is given by the following equations [1]: 

 

   
        

  ⁄  (5.26) 

 
   √  

  ⁄   
(5.27) 

 

  is the convective transfer co-efficient and   is the thermal conductivity of aluminium.    is 

the perimeter of the heat sink fin, but may be approximated as twice the fin width for a thin 

fin.    is the surface area of the heat sink fin and   is the length of the fin. 

    

When the efficiency of the heat sink described above is computed, a value of 0.93 is 

obtained.  Equation 5.22 should now be adjusted to include heat sink fin efficiency.   

 

                          (5.28) 

              (5.29) 

 

The inclusion of this type of heat sink in the LCPV system should reduce the difference 

between the PV receiver temperature and the ambient temperature by a factor 2.325.   

 

5.5.2 Experimental 

The LCPV system was housed within the same insulating enclosure as described in section 

5.1.2.2.  A K-type thermocouple was used to measure PV receiver temperature.  Two panel 

fans were used to simulate air flow of 1.2m/s across the PV receiver.  The LCPV system was 

mounted on a two-axis tracker.  The PV receiver was operated in open circuit, thus   =0.     

 

The experiment was conducted on a two separate days in February 2012 and measurements 

were averaged over 2-minute intervals.  The experiment was conducted for 50 minutes on 

each day.  The irradiance was relatively constant during the experimental period on each 

day.  The heat sink was attached to the PV receiver on the second day.   
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5.5.3 Results 

Figure 5.11 shows the temperature difference between the PV receiver temperature and 

the ambient temperature.  It is clearly illustrated in Figure 5.11 that the addition of the heat 

sink reduces the temperature difference.  The temperature difference is approximately 40°C 

without a heat sink and approximately 25°C when a heat sink is included.  Experimentally 

the temperature difference is reduced by a factor of 1.6, which is less than predicted by 

equation 5.25.   

 
Figure 5.11: Graph showing temperature difference with/without heat sink 

 

In section 5.4.1 it was assumed that the convective transfer co-efficient remains constant 

when the heat sink is attached to the PV receiver and only the convective area is increased.  

However, the heat sink fins may reduce the air velocity and consequently the convective 

transfer co-efficient would be less than expected as shown in section 5.2.2.2.  Using the 

thermal model, a convective transfer co-efficient of 43W/m².K was calculated for the 

configuration without a heat sink.  Similarly, a convective transfer co-efficient of 32W/m².K 

was calculated for the configuration with a heat sink.  The addition of the heat sink, and the 

associated decrease in air velocity, causes the convective transfer co-efficient to decrease 

by approximately 25%.   
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5.6 Thermal Stress Evaluation 

It is suspected that long term PV cell operation at high temperatures may lead to 

degradation and a subsequent reduction in power output.  The following experiment was 

designed to assess the degradation, if any, of the PV cells after a period of thermal stress.   

 

5.6.1 Experimental   

The LCPV system was housed within the same insulating enclosure as described in section 

5.1.2.2.  A K-type thermocouple was used to measure PV receiver temperature.  Two panel 

fans were used to simulate air flow of less than 0.5m/s across the PV receiver and no heat 

sink was attached to the PV receiver.  The low air velocity and exclusion of a heat sink 

ensured that the PV cells were subjected to high operating temperatures.  The LCPV system 

was mounted on a two-axis tracker.  The PV receiver was operated in open circuit, thus 

  =0. 

 

The experiment was conducted on several clear days in March 2012 and measurements 

were averaged over 2-minute intervals.  The experiment was conducted for approximately 

35 hours in total.  The total energy incident on the PV receiver during the experimental 

period was approximately 135kWh/m².  I-V characteristics of the PV receiver were 

measured before and after the experiment.   

 

5.6.2 Results 

Figure 5.12 shows the time of operation of the PV receiver as a function of operating 

temperature.  The PV receiver operated at temperatures between 91°C and 100°C for 

approximately 25 hours.  The PV receiver also operated at temperatures above 100°C for 

approximately 5 hours.  As can be seen from Figure 5.11, the PV receiver operated at 

temperatures between 81°C and 110°C for more than 95% of the experimental period.   
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Figure 5.12: Graph showing the frequency of PV receiver operating temperatures 

 

Figure 5.13 shows the IV characteristics under concentration conditions before and after the 

experimental period.  Current was corrected to irradiance of 1000 W/m² and voltage was 

corrected to temperature of 25°C.  Short circuit current and maximum power point 

increased slightly after the period of thermal stress.  The open circuit voltage decreased 

slightly after the period of thermal stress and the fill factor was unchanged after the period 

of thermal stress.  Table 5.3 gives a summary of various parameters before/after thermal 

stress.   
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Figure 5.13: IV characteristics of the PV receiver under concentration conditions 

before/after thermal stress 
  

Table 5.3: Various electrical parameters before/after thermal stress 

 Before After Δ (%) 

    (A) 2.56 2.63 2.7 

    (V) 4.89 4.82 -1.4 

     (W) 7.15 7.24 1.3 

   0.57 0.57 0 

  4.74 4.70 -0.8 

 
     

Despite the small fluctuations, within measurement uncertainty, of the electrical 

parameters, it seems reasonable to conclude that the period of thermal stress did not have 

an apparent negative effect on the electrical performance of the LCPV system.  It is thus 

possible that the polymer compounds, such as ethylene-vinyl-acetate (EVA) and Ethylene 

tetrafluoroethylene (ETFE), are responsible for the degradation of the PV receiver under 

thermal stress [7, 8].  Since no polymer compounds where used in this experiment it is 

expected that the PV receiver would not degrade under thermal stress.               
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5.7 Summary 

The thermal model predicted temperatures that corresponded closely to the experimental 

equivalents under various operating conditions.  The thermal model allows empirical 

calculation of the convective transfer co-efficient and may be used to predict operating 

temperatures of a LCPV system.  Operating temperatures in excess of 90°C were recorded 

under experimental conditions, but the addition of heat sink reduced the temperature 

difference by a factor of 1.6.  This value is significantly less than the theoretical value of 

2.35, suggesting a decreased convective transfer co-efficient when the heat sink is attached.  

The high temperatures associated with a 35 hour thermal stress test did not significantly 

degrade the silicon PV cells used in this study.     
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Chapter 6 

 

CONCLUSION 

 

The analysis of the optical-, electrical- and thermal subsystems is essential for the design 

and implementation of an efficient, economically viable LCPV system.  This chapter 

consolidates the results of chapters 3, 4, and 5 and makes recommendations with regard to 

the design of LCPV systems in the future.    
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6.1  Optical Sub - System 

The 7-facet line-focused reflector system achieved an effective concentration ratio of 

approximately 4.7.  The corresponding geometric concentration is 4.83, which indicates that 

less than 2.5% of the incoming irradiance is lost through optical imperfections.  The effective 

concentration ratio is also 60% greater than previous V-trough LCPV systems.  The 

concentration ratio may be increased by adding more reflector facets, but an extrapolation 

of the optical model, as shown in Figure 6.1, suggests that this may not be economically 

viable.  Although an extensive evaluation of the optical sub-system is beyond the scope of 

this study, the improved concentration ratio and minimal optical losses strongly suggest that 

the experimental reflector system is an effective method of concentrating sunlight in a LCPV 

system.   

     

Figure 6.1: Graph showing geometric concentration ratio as a function of number of facets 
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6.2  Electrical Sub - System 

Simulated I-V curves, based on the 1-diode model, showed that series resistance 

significantly contributes to power losses in a LCPV system.  The simulated fill factor of a PV 

cell, with a series resistance of 0.05Ω, decreased from 0.75 under 1X concentration to 0.44 

under 3X concentration conditions, which corresponds to a power loss of more than 40% 

under concentration.  Figure 6.2 shows simulated I-V curves corresponding to a series 

resistance of 0.05Ω.  However, power losses can be minimized by decreasing the size of the 

PV cell and subsequently decreasing the short circuit current.  By halving the size of the PV 

cell, the simulated maximum power point increased by approximately 20%.   

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: I-V characteristic showing the effect of series resistance under concentration 

 
     

Three PV receivers, consisting of 4-, 6- and 8 cells, were manufactured.  The short circuit 

current, open circuit voltage, maximum power point and fill factor of each PV receiver are 

listed in Table 6.1.  Under concentration, the 8-cell PV receiver achieved a maximum power 

point of 7.13W, which corresponds to a 23% improvement compared to the 4-cell PV 

receiver.  However, the maximum power point is relatively unchanged under 1-sun 

conditions.  Experimentally, resistive losses are thus not significant under 1-sun conditions, 

but the increased short circuit current associated with concentration significantly amplifies 

the effect of series resistance.  Figure 6.3 shows the I-V curve of each PV receiver under 

concentration.   
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Table 6.1: I-V parameters of the 4-, 6- and 8-cell receivers 

 
4-Cell 

1-Sun 4.83-Sun 

    1.13 A 5.28 A 

    2.28 V 2.43 V 

     1.62 W 5.78 W 

 
6-Cell 

1-Sun 4.83-Sun 

    0.72 A 3.38 A 

    3.51 V 3.61 V 

     1.48 W 6.50 W 

 
8-Cell 

1-Sun  4.83-Sun 

    0.54 A 2.56 A 

    4.73 V 4.88 V 

     1.67 W 7.13 W 

   

 Figure 6.3: I-V characteristics of the 8-, 6- and 4-cell under 4.83-sun conditions at direct irradiance of 
1000W/m² 
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6.3  Thermal Sub - System 

A thermal model, based on an energy balance between irradiance, convection, radiation 

and electrical work, was developed to predict the operating temperature of a LCPV system 

under various environmental conditions.  The model was experimentally evaluated by 

monitoring the temperature of the PV receiver and the increase in air temperature across 

the PV receiver.  The total energy dissipated by the PV receiver corresponded to the total 

energy absorbed within measurement uncertainty, which suggests that the thermal model 

is an effective method of estimating operating temperatures in a LCPV system.   The thermal 

model can also be used to empirically calculate the convective transfer co-efficient of the 

LCPV system.   

 

Experimentally, the thermal model accurately predicted the operating temperature of the 

LCPV system, within experimental error, under changing air velocity and irradiance.  Figure 

6.4 shows a comparison between the thermal model and the experimental values for 

various air velocities.  The thermal model also correctly predicted a decrease in operating 

temperature when electrical work was extracted.  In addition, the experimental data 

indicates that the convective transfer co-efficient is proportional to      , where   is the air 

velocity.  This result corresponds closely to the theoretical proportionality of       for a 

horizontal plate.               

 

 
Figure 6.4: Graph showing the dependence of PV receiver temperature on air velocity 
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 A heat sink attached to the PV receiver reduced the temperature difference by a factor of 

1.6, but theoretically a factor of 2.35 was expected.  It is probable that the fin design of the 

heat sink decreased the air velocity and subsequently less energy was dissipated through 

convection.   A thermal stress test was also performed to evaluate PV cell degradation under 

high operating temperature conditions.   The PV receiver was subjected to temperatures of 

above 90°C for more than 25 hours, but no significant change in the I-V characteristic was 

observed, which indicates that high operating temperatures do not degrade the PV cells 

used in this study.  Figure 6.5 shows the I-V characteristic of the 6-cell PV receiver before 

and after the thermal stress test.   

 

 
Figure 6.5: IV characteristics of the PV receiver under concentration conditions before/after 

thermal stress 
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6.4 Recommendations 

The 7-facet reflector system had a geometric- and effective concentration ratio of 4.83 and 

4.7 respectively.  Optical losses are thus less than 2.5%, indicating a satisfactory optical sub-

system design.     The low current 8-cell PV receiver achieved the highest maximum power 

point of 7.13W relative to the higher current 6- and 4-cell PV receivers.   This suggests that 

the electrical sub-system can be optimized through the use of small, low current PV cells.  

The thermal model accurately predicted LCPV operating temperatures under various 

conditions.  The inclusion of a heat sink in the thermal sub-system reduced the operating 

temperatures, but the results of the thermal stress test suggest that high operating 

temperatures will not degrade the PV cells. 

 

In accordance with the results of this study, the following recommendations are made with 

respect to LCPV system design: 

 

 A faceted reflector system, consisting of up to 10 facets, should be used to 

achieve a satisfactory effective concentration ratio (~5). 

 Small, low current PV cells should be used to minimize the effect of series 

resistance, and maximize the power output. 

 An appropriate heat sink should be used to decrease the operating temperature, 

and consequently increase the maximum power point. 
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Appendix: Mathematica Code 

cl=Input["PV receiver length"]; 

nd=Input["PV receiver height"]; 

nf=Input["Number of facets"]; 

x=cl; 

y=0; 

 

 

 theta=N[ArcTan[x/nd]]/2; 

 x1=Cos[theta]*(cl*Sin[(Pi/2)-(2*theta)])/Sin[(Pi/2)+theta]; 

 r=(cl*Sin[(Pi/2)-(2*theta)])/Sin[(Pi/2)+theta]; 

 x=x+x1; 

 y=x1*Tan[theta]; 

 nd=nd-y; 

 Print[x,"  ",y,"   ",nd,"   ",theta/(2*Pi)*360, "  ", r] 

 ] 

 


