RECORD Workshop on Ocean Energy 10 October 2012

Role of the CSIR in Ocean Energy development

Padhraic O' Connor

© CSIR_2012

CSIR – Council for Scientific and Industrial Research

Multi faceted research organisation

Stellenbosch branch research focus:

- Natural Resources
 and Environment
- Coastal and Ports Engineering (CPE)

CPE group – few individuals focusing on coastal erosion, port infrastructure, harbour navigation, ship motions, numerical and physical modelling

CSIR Capabilities and Facilities

© CSI

Physical modelling of coastal structures in Hydraulic Laboratory

Large test area and numerous facilities 3 3D Wave Basins 2 2D Wave Flumes 3 Quasi 3D Wave Basins 1 Deepwater Current Channel 24m Portable Wave Generators

Ship Motion Studies

CSIR Capabilities and Facilities

Numerical modelling

- Hydrodynamic & Wave modelling
- Ship motion modelling
- Ship approach and manoeuvre modelling

MetOcean data collection around SA

EIA studies

Langebaan Lagoon

Ysterfonteir

320.0

300.0

280.0

(m) ate 260.0

8

240.0

Water depth (m MSL)

<0.0 <5.0 <10.0

<15.0

<20.0 <30.0 <50.0

<75.0

<100.0 <125.0 <150.0 <175.0 >175.0

oeberg

Cape Town

Cape Point

460.0

How can CSIR contribute to Ocean Energy in South Africa?

3 Key facets

1) MetOcean monitoring around South African coastline

Current/wave/wind/salinity/temperature monitoring and data collection

2) Numerical Modelling and Desktop studies

- Numerical models and studies can be used to determine Ocean Energy potential

- EIA studies

3) Physical modelling – facilitator for model device testing

1. MetOcean Monitoring in South Africa

- 8 Waverider buoys around SA coast Saldanha, Cape Point, Mossel Bay, Mossgas Platform, Ngqura, East London, Durban, Richards Bay
- Buoys acquire & transmit live wave data (height, period, direction)
- Data instantly added to CSIR database in Stellenbosch

1. MetOcean Monitoring in South Africa

- Live readouts available on *wavenet.csir.co.za*
- Virtual Buoy network: Table Bay, Mossel Bay (forecasting), Algoa Bay (proposed)
- Weather monitoring wind at ports.

2. Numerical Modelling & Desktop Studies

- Wave conditions can be extrapolated at any point on the coastline following intense numerical modelling.
- Modelled local wave conditions utilised to determine *potential* wave energy at:
 - a) Swathes of the coastline (low res output) or
 - b) Single coastal location (high res output)

Suitability of proposed locations for Ocean Energy schemes can thus be determined. More accurate raw data and coastal models = more accurate site-specific output.

• EIA studies – Ecological and Environmental awareness

www.csir.co.za

© CSIR 2011

- Lab has many decades experience modelling 2D & 3D waves
- Typically model coastal structures and ship movements similarities with OEDs
- OED study different from coastal structures one monitors *potential energy output* from a device. Specialist hydromechanics/electronics/mechatronic field

www.csir.co.za

- CSIR presently willing to aid developers at conceptual stage and model validation stage
- A number of concept devices have already been modelled in the lab.

© CSIR 20

Limitations

- Modelling of Ocean Energy Devices Young discipline with varying theories on how to model and acquire data. No set standards or procedures.
- Initial *Proof of Concept* study is relatively straightforward (small scale observation)

Limitations

- Modelling of Ocean Energy Devices Young discipline with varying theories on how to model and acquire data. No set standards or procedures.
- Initial *Proof of Concept* study is relatively straightforward (small scale observation)
- Performance and Optimisation phases of design will require a host of specialist knowledge
- Assistance in fields of energy absorption, abstraction, power conversion/PTO, power losses, energy transfer, hydraulic engineering etc will be required, among many others

Limitations

- Modelling of Ocean Energy Devices Young discipline with varying theories on how to model and acquire data. No set standards or procedures.
- Initial *Proof of Concept* study is relatively straightforward (small scale observation)
- Performance and Optimisation phases of design will require a host of specialist knowledge
- Assistance in fields of energy absorption, abstraction, power conversion/PTO, power losses, energy transfer, hydraulic engineering etc will be required, among many others
- Developers should work in conjunction with CSIR & US/CRSES for specialist advice, direction and delegation. This 3-way collaboration must be promoted to enhance future renewable research and fortify Ocean Energy knowledge in SA

Future CSIR research and vision for Ocean Energy in South Africa

2 different focuses

a) Improve MetOcean data sets

b) Develop more structured procedures for Ocean Energy Device development in SA

Improve SA MetOcean data sets

© CSIR 2011

• More Waverider buoys will result in:

Greater covered area, better coastline resolution, improved hindcast data sets, improved forecasting capabilities, promote understanding of long term climate and ultimately wave energy resources

Definite structure required regarding Ocean Energy development in SA

i) Develop structured guidelines or procedures for ocean energy device developers

Definite structure required regarding Ocean Energy development in SA

- i) Develop structured guidelines or procedures for ocean energy device developers
- Developers are diving headlong into testing their small scale devices. No methodology, no procedures, no development plan.
- Little experience with wave energy, marine engineering, power systems or energy networks all critical aspects of ocean energy extraction
- Unprepared for challenges and long term commitments that lie ahead.

Definite structure required regarding Ocean Energy development in SA

- i) Develop structured guidelines or procedures for ocean energy device developers
- Developers are diving headlong into testing their small scale devices. No methodology, no procedures, no development plan.
- Little experience with wave energy, marine engineering, power systems or energy networks – all critical aspects of ocean energy extraction
- Unprepared for challenges and long term commitments that lie ahead.
- Remember: Primary lab tests are highly idealised and simplified, and initial results must be taken as proof of concept.
- Direct developers to relevant specialists via CRSES or through SAOEN
- Refer to recently-published procedures in Europe

© CSIR _2009

ii) Create official SAOEN forum?

ii) Create official SAOEN forum?

Could include:

- Local renewable news/updates.
- International news and available resources (documents, papers, procedures etc)
- Local SA energy developments
- Routes to funding.

Perhaps discussion point in afternoon....

Discussion on developing guidelines for Ocean Energy development.

"Within the wave energy community there is at present no agreed common approach for the development and evaluation of energy extraction devices." Brian Holmes, EMEC, 2009

Outline EU approach to collaboration and guidelines

See

- EMEC test facilities and grid connection
- 12 EMEC guidelines for developers
- Wavenet
- Marinet 11 EU countries & 30 institutes collaborating
- UKERC

Many others...

