Solar Thermal Process Heat - Chances and Challenges

University Stellenbosch, Lunch Presentation

Werner J. Platzer

Director Division Solar Thermal and Applied Optics Fraunhofer Institute for Solar Energy Systems ISE

Stellenbosch, 15th May 2015

© Fraunhofer ISE

Fraunhofer ISE – Short Profile

Director Prof. Eicke Weber

Founded 1981

12 Business areas

Budget 2013 88 Mio €

Revenues from Industry average 42% (over last seven years)

1250 Employees

Strong growth rate 2008-2012

Fraunhofer

R&D Fraunhofer ISE - Solar Thermal

Solar Thermal Technology for Heat and Electricity

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

Note: Figure based on 2009 data Source: Energy Technology Perspectives 2012 © Fraunhofer ISE

Final energy consumption EU27

Technical Potential Solar Process Heat

Several studies of the past showed approximately:

- High percentage of process heat in industry is below 250°C (Europe 35% below 200°C, Germany 25% below 250°C)
 - Vannoni et.al. (2008) IEA Task 33
 - Lauterbach et.al. (2012) Projekt SOPREN
- Technical potentials have been estimated at about 3% (2.8 -4.5%) of total industrial heat demand (restrictions area, temperature, efficiency measures)
- Solar collector area required
 - Europe around 155 Mio. m2
 - Germany around 35 Mio. m2
- European market 2013: 3 Mio. m2

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

© Fraunhofer ISE

Solar Thermal Collectors – for Power, Cooling and Heat

Fraunhofer

Process Heat: Collector Development

- Development of highly efficient flat plat collector wih reduced heat losses
- Working temperatures 80 °C to 150 °C -> medium temperature range

Prototype of RefleC-Collector Nov. 2010 on tracker facility of Fraunhofer ISE

💹 Fraunhofer

© Fraunhofer ISE

Thermal Vacuum Power Charged[™]

TVP charged panels allow for the first time to take full advantage of high vacuum insulation in a planar layout at low cost

TVP panels can operate at high temperature with high efficiency, without requiring any concentration (using direct AND diffuse light)

Parabolic Throughs and Linear Fresnel Collectors

- Reduced temperature level for process heat compared to CSP
- Smaller solar field requires different installation procedures

© Fraunhofer ISE

Fraunhofer

Indigenous Technology: Scheffler Reflector

Main technical data:

- 770 Scheffler dishes with fix focus (60 m2 each)
- Reflector area: 45.000 m2
- 1 MW_{el} (Siemens turbine,
- 255 °C, 41 bar)
- 3.5 MW_{th} (hot water grid)
- Metal core storage for continuous operation

Supported by MNRE and BMU (Germany) Consultant: Fraunhofer ISE www.india-one.net

Standardization of Performance Testing

- EN ISO 9806:2013 includes testing of tracking collectors QDT (Quasi-dynamic test method) can be applied
- Dynamic parameter identification compares well and offers the potential for field testing of large collectors under fluctuating conditions
- Non-invasive sensors (clamp-on) techniques have to be further tested and evaluated using uncertainty analysis
- Certification may be introduced with upcoming harmonized standard hEN 12975:1 to be expected Spring 2015
- Experimental facilities for medium temperature are avaliable in several testing labs

© Fraunhofer ISE

Content

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

Fraunhofer

CE

Heat Integration

© Fraunhofer ISE

Solar Thermal Heat Integration Process- or Supply Level?

Solar Thermal Heat Integration Process Level

Simplified system concept for direct process heating

© Fraunhofer ISE

Simplified system concept for heating of make-up water

🗾 Fraunhofer

What is the demand in future?

© Fraunhofer ISE

- Process Level
 - Solar heat is directly supplied to the process.
 - Can be used for processes where the temperature of heat required is of low grade (until 100 °C) such as washing, cleaning, heating of industrial baths, hot air drying.
 - Is useful most when the heat requirement is restricted to one or two processes.
- Supply Level
 - Solar heat is supplied to all the processes through the heat distribution network.
 - Used in steam networks and high temperature networks where the solar thermal system may deliver pre-heated feed water or direct hightemperature steam
 - Flexible against process and demand changes!

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

© Fraunhofer ISE

IEA Task 49 Simulation Cases

Fraunhofer

Comparison of preliminary results- IEA Case 2

- Even the use of the same tool does not guarantee identical results!

© Fraunhofer ISE Fraunhofer ISE

Comparison ETC tilted versus Linear Fresnel horizontal

200 m2 collector area in different climates Lift of return flow from steam network 110°C -> 130°C,

First Results from Case Studies

- Daily and annual demand profiles (holidays! Weekends!) have a tremendous influence on levelized cost of heat (LCOH)
- Choice between non-concentrating collectors and concentrating ones is not easy, especially in temperature range around 100°C
- For supply level integration the steam network is important:
 - Open networks with high demand on freshwater -> Preheating
 - Closed networks with little steam loss -> Steam injection
- Required solar fraction and available roof space often dominates the selection process
- Storage can improve appreciably system utilization (especially over weekends, for batch-processes/discontinuous demand patterns)

Fraunhofer

Important issues for selection

- Overheating protection stagnation is easily avoided with tracking collectors
- Requirement of heat exchanger (DSG-collectors)
- Easy control of power output (e.g. mirror control Fresnel)
- Space requirements
- Local content of system
- Local installers expertise
- Cleaning procedures different
- Cost
 - Installation
 - Operation and Maintenance

© Fraunhofer ISE

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

© Fraunhofer ISE

Fraunhofer

State of Solar Process Heat Applications

IEA Task 49 Database Location with Google Maps

Locations: 134 projects

© Fraunhofer ISE

Summary Reports from Database

🗾 Fraunhofer

Detailed Project Description

Filtering of Projects

FILTER				
Name contains	Displaying all 10 projects			
Country Year of operation start From year To year	NO РНОТО	Alpino S.A. Thessaloniki, Greece Greece Operation start: 1999	e.g. NACE-Code C10.5 Manufacture of dairy	
Industry sector C10.5 - Manufacture of dairy pro Unit operation		Cremo SA Route de Moncor 6, 1752 Villars-sur-Glâne Switzerland Operation start: 2013	products	
Gross collector area, m ² Min Max Kind of solar thermal collectors installed	NO РНОТО	Dairy Plant (El Indio) San José de Gracia, Michoacán Mexico Operation start: 2012		
Solar energy storage Point of Solar Heat Integration		Dairy Plant (La Doñita) Neutla, Guanajuato, Mexico Mexico Operation start: 2014		
Solar thermal engineering company	No. of Concession, Name	Durango Dairy Company (Productos Lácteos COVBARS) Av. Francisco Villa 1211, Villa de Guadalupe, Durango, Durango, Mexico. CP: 34040 Mexico Operation start: 2013		
		Emmi Dairy Saignelégier Chemin du Finage 19, 2350 Saignelégier, So Switzerland	vitzerland	

First Results – IEA SHC Task 49 Data base

124 systems, 125,600 m², 87.8 MW

System price related to system size

Fraunhofer

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

© Fraunhofer ISE

Hot Water for Solar Car Wash Plant

SunWash – Energy Balance

Brewery Göss, Austria

© Fraunhofer ISE

Integration into the mashing process

© Fraunhofer ISE

Integration into the mashing process

Source: AEE Intec

Copper Mining Hydrometallurgical copper recuperation processes

Size of rock has been reduced by means of mills and grinders Entails heap leaching, solvent extraction and electro-winning Continuous process, aiming to increase copper concentration in every phase

© Fraunhofer ISE		Fraunhofer

Solar thermal energy integration

Great potential for solar thermal energy in electro-winning process

Temperatures needed are around 55-70°C

Two solar plants already operating

2010, Minera El Tesoro. Parabolic trough collector system. 16700 m² aperture area. 7.0 MWth. Turnkey project, executed by Abengoa, operated by Minera El Tesoro

Abengoa. Installed plants

Solar thermal energy integration

- 2013, Minera Gaby. Flat plate collector system. 39000 m² aperture area.
 32 MWth
- Consortium between Sunmark (Denmark) and Energia Llaima (Chile). Minera Gaby buys energy. Thermal Power Purchase Agreement contract for 10 years

Ian Nelson. ISES Webinar, 31.01.2014. Sun is shining on mining thermal processes. Replacing fosil fuels with solar supply

© Fraunhofer ISE

Variable energy demand

 Annual energy consumption decreases considerable (from ~ 14000 m³/year to ~ 8000 m³/year)

🗾 Fraunhofer

ISE

As the storage size increases, the solar fraction increases. Solar system covers a significant part of the demand during the night

Under no demand conditions

Worst case: after two days solar tank reaches 120 °C. Increasing solar storage capacity extends the period of time

Source: Cuevas, F. et.al., SHC 2014, Energy Procedia

Further work

Integration of solar thermal system in heap bioleaching -> Increase of productivity, lower grade ore may be used?

Solar Thermally Assisted Heap Bioleaching

- Introduction
- Medium Temperature Collectors
- Integration of Solar Heat
- System Simulation
- Projects Overview
- Examples
- Conclusion

© Fraunhofer ISE

Fraunhofer

Conclusion Solar Process Heat

- Integration on the supply level is more flexible than on the process level
- Non-concentrating collectors work in all climates
- Concentrating collectors may serve steam networks with temperatures above 170°C, but they need high DNI (about 1800 kWh/m2a)
- Optimizing of systems very individual -> good simulation required
- Demand pattern very much influences economics
- Low solar fraction : Possibility of cost-effective systems when demand exceeds production at any time
- High solar fraction needs storage
 -> research for steam storage for medium temperature and pressure level (e.g. PCM) required

Fraunhofer

Conclusion Solar Process Heat

- Collector field cost are still too high in many cases, also subsidies for conventional fuels in many countries too high!
- Financing schemes and risk management are a key issue
- IEA Task 49 is working on support
 - Handbook Solar Process Heat
 - Simulation tools
 - Collector testing
 - Prevention methods overheating
 - ·····

Visit http://www.iea-shc.org/tasks-current

© Fraunhofer ISE

Fraunhofer

IEA-SHC-Task 49/IV: Solar Heat for Industrial Processes and Advanced Applications

- Operating Agent: Christoph Brunner c.brunner@aee.at
- Duration: Feb. 2012 – Jun. 2016
- Next meeting: 16th/17th September 2015 in Perpignan, France

Kick-off meeting at Fraunhofer ISE: 29 Feb. 2012

- Subtasks:
 - A: Process Heat Collectors (Pedro Horta, ISE)
 - B: Process Integration and Intensification (Bettina Muster, AEE)
 - C: Design Guidelines, Case Studies, Dissemination (Werner Platzer, ISE)

Thank you for listening!

Fraunhofer-Institute for Solar Energy Systems ISE

www.ise.fraunhofer.de

Dr. Werner Platzer werner.platzer@ise.fraunhofer.de

© Fraunhofer ISE

Fraunhofer

AR

INDUSTRIAL SOL

thermal solutions

Climate and DNI

DURR

www.industrial-solar.de