Energy

Energy is measured in Joule.

1 Joule is the amount of energy needed to exercise a force of 1 Newton over a distance of 1 meter.

Power

Power is the amount of energy (Joule) converted from one form to another in 1 second.
E.g.: In a light bulb electrical energy gets converted into light and heat energy.

Power is measured in: Watt (W)

\[1\,000\,W = 1\,kW \text{ (kilowatt)} \]

For example, the power of different light bulbs differ:

*In a light bulb of 100 Watt power marked 100 W –
100 Joule of energy is converted from electrical energy to light energy and heat energy in 1 second.*

*In a light bulb of 60 Watt power marked 60 W –
60 Joule of energy is converted from electrical energy to light energy and heat energy in 1 second.*

\[
\text{Power (W)} = \frac{\text{Energy (J)}}{\text{Time}}
\]

and therefore

\[
\text{Energy (J)} = \text{Power (W)} \times \text{Time}
\]

Energy Consumption in the Home:

Because we use so many electrical appliances in our homes every day, a large amount of electrical energy is consumed. For practical reasons we measure the power (W) of appliances in kilowatt (kW) and the time for which they are used, in hours (h). Thus the amount of energy consumed is measured in kilowatt-hour (kWh).

Municipalities measure and sell our electrical energy consumption in kilowatt-hour (kWh). 1 kWh is often referred to as 1 ‘unit’ and costs approximately R1.80.
In other words, for every 1 hour I use my 1 000 W toaster or other appliance, it costs me R1.80.
Practical Assignment:

In South Africa energy is mainly generated by burning fossil fuels (e.g. coal). Burning fossil fuels produces CO₂ (carbon dioxide) – a greenhouse gas. Excessive release of CO₂ causes global warming, resulting in climate change. Electricity generated by burning coal causes almost 0.915 kg of CO₂/kWh to be released. In other words, for every 1 hour I use my 1 000 W toaster, almost 1 kg of CO₂ is being released into the atmosphere.

1. Select any 10 electrical appliances in your home and complete the table below over a period of 5 days.

<table>
<thead>
<tr>
<th>Electrical Appliance</th>
<th>Qty</th>
<th>Power Watt (W)</th>
<th>Power Kilowatt (kW)</th>
<th>Usage time per day in hour (h)</th>
<th>Energy consumption per day in kWh</th>
<th>No. of days</th>
<th>Total Energy consumption in kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light bulb</td>
<td>1</td>
<td>100</td>
<td>0.1</td>
<td>30min</td>
<td>0.1kW x 0.5h = 0.05kWh</td>
<td>5</td>
<td>0.05kWh x 5days = 0.25kWh</td>
</tr>
<tr>
<td>Kettle</td>
<td>1</td>
<td>1600</td>
<td>1.6</td>
<td>48min</td>
<td>1.6kW x 0.8h = 1.28kWh</td>
<td>5</td>
<td>1.28kWh x 5days = 6.4kWh</td>
</tr>
</tbody>
</table>
2. Using a bar graph, indicate which appliances consume the most energy.

3. Indicate the total amount of kWh consumed.

4. If one unit (1 kWh) costs R1.80 – what is the cost of the total amount of electrical energy that has been consumed?

5. Now determine the total amount of CO\textsubscript{2} that had been released in order for you to use the above appliances.

6. Name the primary fossil fuels used today.

7. What should be changed on the table to result in the release of less CO\textsubscript{2}?

8. Could you suggest other ways in which one could reduce the release of CO\textsubscript{2} gases?