Crystalline Silicon Solar Cells
- A Glance from Europe

Joachim John

Outline

• Introduction to IMEC

• Motivation Photovoltaic Solar Energy

• European Solar Energy Strategic Research Agenda

• IMEC Solar Energy

• Summary and Outlook
Introduction to IMEC

Statistics:
- Independent Belgian R&D institute
- Total Revenue (2006): 227 M€
- Personnel (2006): 1500
 - 330 visiting scientists and industrial residents
 - 220 PhD Students
- 35% non-Belgian, 51 nationalities
- Average age ≈ 35 years
- 1652 scientific papers, 139 invited, 97 patents filed

Infrastructure:
- 24,400m² offices and laboratories
- 5,200m² cleanroom I (200mm)
 - 1,750m² class 1
- 3,200m² cleanroom II (300mm)
 - Basic process: 90nm CMOS
- Pilot Lines
 - 300mm and 200mm silicon pilot line
 - solar cell pilot line
 - multi-chip-module pilot line
- Laboratories
 - Bio, Organic, RF, DSP
- 220 PhD Students
- 330 visiting scientists and industrial residents
- Total Revenue (2006): 227 M€

Annual Revenue (M€)
- Total-revenue (NL)
- Total revenue (Flanders)

No. of scientific publications

Personnel

Statistics:
- Independent Belgian R&D institute
- Total Revenue (2006): 227 M€
- Personnel (2006): 1500
 - 330 visiting scientists and industrial residents
 - 220 PhD Students
- 35% non-Belgian, 51 nationalities
- Average age ≈ 35 years
- 1652 scientific papers, 139 invited, 97 patents filed

Infrastructure:
- 24,400m² offices and laboratories
- 5,200m² cleanroom I (200mm)
 - 1,750m² class 1
- 3,200m² cleanroom II (300mm)
 - Basic process: 90nm CMOS
- Pilot Lines
 - 300mm and 200mm silicon pilot line
 - solar cell pilot line
 - multi-chip-module pilot line
- Laboratories
 - Bio, Organic, RF, DSP
- 220 PhD Students
- 330 visiting scientists and industrial residents
- Total Revenue (2006): 227 M€

Annual Revenue (M€)
- Total-revenue (NL)
- Total revenue (Flanders)
Introduction to IMEC

Outline

- Introduction to IMEC
- Motivation Photovoltaic Solar Energy
- European Solar Energy Strategic Research Agenda
- Solar Energy in IMEC
- Summary and Outlook
Motivation Photovoltaic's

Humanity’s Top Ten Problems for next 50 years

1. ENERGY
2. WATER
3. FOOD
4. ENVIRONMENT
5. POVERTY
6. TERRORISM & WAR
7. DISEASE
8. EDUCATION
9. DEMOCRACY
10. POPULATION

Energy Generation

- **Resources (what/how much)**
 - Conventional (coal, oil, gas, nuclear)
 - Renewable (solar, wind, water, geo, bio)

- **Cost (commercial)**
 - €/W (investment, amortization, materials, personal)

- **Environment (real costs)**
 - Coal, oil and gas: Social cost of coal (SCC)
 - Nuclear: (external costs)
 - storage of Plutonium waste (unsolved),
 - worst case scenario insurance (not existing),
 - decontamination of the nuclear power plant (not calculated)
Prices of coal, oil and gas increased from 2000-2005 factor 2-3, uranium factor 4.5

Source: Ministry for Environment, Germany (2007)

Impact on South Africa’s Biomes

Source: J. TURPIE et al, 2002

$\Delta T = 2.5^\circ C$
Consequential Costs

Caused by:
- Climate change
- Air pollution
- Water pollution
- Ground pollution

Increase of natural disasters 1950-2000

Consequential Costs

Increase and trend of economical damage of natural disasters 1950-2000

Source: Münchner Rück Insurance (2001)
Consequential Costs

In SA: 316Mt CO₂, 8.2 Tonnen CO₂ per person = Italy or France

Social cost of coal (SCC)

0.15 €/tCO₂ up to 3 €/tCO₂ *, (UK Department for Environment, Food and Rural Affairs - Defra)

Actual price of coal = 7ct/kWh,

* Downing et al. (2005)

Stock of Energy Source

Equivalent Stock of Energy Source

Annual Energy from the Sun

Uranium Natural Gas Oil Coal Annual Energy Demand

47 years* 62 years 64 years 200 years

Reasonably assured Resources (RAR)

* Red Book (NEA/OECD)
Change of the worldwide energy generation

Veränderung des weltweiten Energiemixes bis 2100

Source: scientific advice council of the federal government (Germany)

Renewable energy as a job motor

- 30,000 new jobs between 2000 and 2006 in Germany
- More jobs as in conventional energy industry together
Economy growth with less greenhouse gas emission

Decoupling Growth, Energy Consumption and Emissions

PV-market

Source: Federal Ministry of Economics and Technology, Germany 2006

Yearly Growth

Module Production

[Mwp/y]

1000

1500

2000

2500

500

0

Source: Maycock PV News

2006: 2.55 GW

World PV Growth (1989-2006)

Growth Rate

Module Production

Yearly Growth rate

20% 16% 19% 5% 4% 16% 12% 14% 42% 23% 36% 36% 33% 42% 68% 45%

40.2 46.5 55.4 57.9 60.1 69.6 66.6 125.8 154.3 201.3 287.7 390.2 525.2 742 1250 1818.

20% 20%

2006: 2.55 GW
Present PV-technologies: terrestrial application

<table>
<thead>
<tr>
<th>Cell Technology</th>
<th>Type of junction</th>
<th>Lab efficiency [%]</th>
<th>Industrial efficiency [%]</th>
<th>Market share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk crystalline Si solar cells</td>
<td>p-n homojunction</td>
<td>24.7</td>
<td>13 – 17</td>
<td>92</td>
</tr>
<tr>
<td>a-Si:H</td>
<td>p-n homojunction</td>
<td>13</td>
<td>6-7 single junction</td>
<td>5</td>
</tr>
<tr>
<td>(a-Si:H; a-SiGe:H; mc-Si)</td>
<td>p-n homojunction multijunction</td>
<td></td>
<td>9-10 multijunction</td>
<td></td>
</tr>
<tr>
<td>CuIn(Ga)Se$_2$(S$_2$)$_2$=CIS</td>
<td>p-n heterojunction with CdS</td>
<td>18.8</td>
<td>9 - 13</td>
<td></td>
</tr>
<tr>
<td>CdTe</td>
<td>p-n heterojunction with CdS</td>
<td>17</td>
<td>9 - 12</td>
<td></td>
</tr>
</tbody>
</table>

Outline

- Introduction to IMEC
- Motivation Photovoltaic Solar Energy
- European Solar Energy Strategic Research Agenda
- Solar Energy in IMEC
- Summary and Outlook
A Strategic Research Agenda for PV Solar Energy Technology

Source: Photovoltaic Technology Platform, 2007

European Research Agenda

Source: European Technology Platform 2007
European Research Agenda

Solar energy generation costs

- **1980**: 2.00 Euro/kWh
- **2007**: 0.30 Euro/kWh
- **2015**: 0.06 Euro/kWh
- **2030**: 0.03 Euro/kWh
- **Long term**:

Source: European Technology Platform 2007

Energy pay-back time

- **1980**: 10 years
- **2007**: 2 years
- **2015**: 1 year
- **2030**: 0.5 years
- **Long term**: 0.25 years

Source: European Technology Platform 2007
European Research Agenda

Concentrator efficiency

- 10% in 1980
- 25% in 2007
- 30% in 2015
- 40% in 2030
- 60% long term

Source: European Technology Platform 2007

European Research Agenda

Flat-plate module efficiency

- 8% in 1980
- 15% in 2007
- 20% in 2015
- 25% in 2030
- 40% long term

Source: European Technology Platform 2007
Learning curve

1. Module price decrease by 20% for every doubling of the cumulative Production
2. Keeping the dynamics, 1$/Module price will be reached at 10GW cumulative production in 2008

Grid Parity in Europe 2010

![Map of Europe with grid parity irradiation and PV generation cost data]

- irradiation (kWh/m²-yr)
- PV generation cost ($/kWh)

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>Generation Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.50</td>
</tr>
<tr>
<td>1000</td>
<td>0.30</td>
</tr>
<tr>
<td>1400</td>
<td>0.21</td>
</tr>
<tr>
<td>1800</td>
<td>0.17</td>
</tr>
</tbody>
</table>

 Courtesy of A. Jaeger-Waldau
 JRC, ISPRA
Outline

- Introduction to IMEC
- Motivation Photovoltaic Solar Energy
- European Solar Energy Strategic Research Agenda
- Solar Energy in IMEC
- Summary and Outlook

SOLAR+ Roadmap: 1 sun

Silicon Solar Cell Program

- Thin crystalline Si (200 → 80 µm)
- Higher efficiency (15→20%) Si-ribbons
- Thin-film crystalline Si (<20 µm)

Organic Photovoltaics

- Consumer applications
- Ambient intelligence
- Higher efficiency
- Stability
- Large-scale application?

Direct cost (C/Wₚ) on module level

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0.75</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>
Evolutionary scenario for crystalline Si PV

- Sustained decrease in active layer thickness
- Five technologies
- Only one major transition for introduction of each technology

Present value chain: Cell processing

- Wafer Cutting/Separation
- Saw damage removal + texturing
- POCl Diffusion
- Parasitic Junction Removal
- PECVD SiNx:H ARC layer
- Screen Printed Metallisation
- Co-firing

Average efficiency in production:
Multi ~ 15 %, Mono ~ 16 %
IMEC solar cell scientific highlights 2007

- Concentrator cells
 - N+1
- i-PERC
- IBC
 - N+2
- Thin film
 - N+3

Presented at the

22nd European Photovoltaic Solar Energy Conference and Exhibition, Milano, Italy 2007

3000 participants and 520 Exhibitors

Single junction GaAs solar cell on Ge substrate

New world record efficiency achieved: 24.7%

New world record efficiency achieved: 24.7%

- Device ID: S004
- Device Temperature: 25.0 ± 1.0 °C
- Device Area: 1.6cm²
- Spectral: AM1.5 G (IEC 989)
- Irradiation: 1000 W/m²

![Graph of current-voltage characteristics](image)

- $V_{oc} = 8.086 V$
- $I_{sc} = 7.396 mA$
- $P_e = 2.84 W$
- Efficiency = 34.67%

Achieved in ESA-IMAGER project, on germanium substrate with improved micro-defect distribution

Courtesy of Giovanni Flamand
i-PERC cells on very thin substrates

<table>
<thead>
<tr>
<th>Passivation stack</th>
<th>Local Al BSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 μm mc-Si</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area (cm²)</th>
<th>J(sc) (mA/cm²)</th>
<th>V(sc) (mV)</th>
<th>FF (%)</th>
<th>Effic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i-PERC(best)</td>
<td>156</td>
<td>34.8</td>
<td>623</td>
<td>77.1</td>
</tr>
<tr>
<td>i-PERC (av)</td>
<td>156</td>
<td>34.5</td>
<td>623</td>
<td>77.0</td>
</tr>
<tr>
<td>Full Al BSF (av)</td>
<td>156</td>
<td>32.8</td>
<td>614</td>
<td>74.6</td>
</tr>
</tbody>
</table>

Stress-induced lift-off process

- Stress-induced lift-off process (1st layer transfer)
- Si substrate to be re-used
- Chemical stress-removal and bonding to alternative substrate (2nd layer transfer)

First solar cell

- J(sc) = 26.7 mA.cm⁻²
- V(sc) = 550 mV
- FF = 67.8 %
- R_series = 980 Ω.cm²
- R_shunt = 4300 Ω.cm²
- Efficiency = 10.0 %

Rear-side cell processing (IBC)
Simulation of stress-induced lift-off

Epi-free lift-off approach

- lift-off and transfer to glass using anodic bonding
- a-Si:H/c-Si heterojunction structure implemented on bonded layers
- Proof-of-concept cell!
Crystalline Si solar cells: Benchmarking

<table>
<thead>
<tr>
<th>Technology</th>
<th>Uniqueness / recent achievements</th>
<th>Main competitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-PERC</td>
<td>Unique process (patented by IMEC) Closest to industrial implementation of all potential local-BSF approaches Highest efficiency results on thin large-area substrates (16.7%, 130 μm multi)</td>
<td>ISE (LFC), but their process still relies on high-quality thermal oxide at rear side</td>
</tr>
<tr>
<td>IBC</td>
<td>Link with manufacturer of ultra-thin ribbons (SolarForce) Rearside HIT-emitter</td>
<td>UKON, ISE, ECN</td>
</tr>
<tr>
<td>Epitaxial cells</td>
<td>Unique process based on porous Si reflector (patented by IMEC) and high-T CVD Highest efficiency results obtained on large area substrates – epitaxial emitter (14.9%)</td>
<td>ISE Uni.Neuchatel – Juelich microcrystalline Si (low deposition rates)</td>
</tr>
<tr>
<td>SionGlass</td>
<td>Best worldwide results obtained with AIC-process (patented for use on ceramics) –8% Highest efficiency potential for thin crystalline Si films on non-Si carrier</td>
<td>UNSW, HMI</td>
</tr>
</tbody>
</table>

Summary

- **Face the challenge:**
 - Energy supply for 10 Billion people by using a carbon free and environment friendly energy generation

- **The answer can only come from renewable energy**

- **Industry has understood that renewable energy is a chance and not a threat**

- **Europe has defined a strategic research agenda**
 - Clear commitments to a carbon free economy based on renewable energy generation.

- **PV Aim:**
 - Reach grid parity as fast as possible by increasing the efficiency and reduce the cost of the solar cell.
Outlook

- **IMEC**
 - Backside passivation of thin bulk silicon solar cells
 - Thin film silicon solar cells
 - Innovative new concepts like quantum dots or nano structures

- **Europe**
 - PV Grid parity of whole Europe until 2030
 - System energy pay back time: 1 year (2015)
 - Turn key system price: 2.5 €/Wp (2015)
 - Solar energy generation cost: 0.15 €/kWh (2015)
 - Flat plate efficiency: 20% (2015)