

Cell Technology	Type of junction	Lab efficiency [%]	Industrial efficiency [%]	Marke share [%]
Bulk crystalline Si solar cells	p-n homojunction	24.7	13 - 17	92
a-Si:H (a-Si:H; a-SiGe:H, μc-S	p-i-n homojunction multijunction	13	6-7 single junction 9-10 multijunction	5
CuIn(Ga)Se ₂ (S ₂) =CIS	p-n heterojunction with CdS	18.8	9 - 13	h
CdTe	p-n heterojunction with CdS	17	9 - 12	3 -

Grid Parity in Europe	2010	
	irradi (kWh/r	iation PV generatioı m ^{2.} yr) cost (€/kWh)
	60	00 0.50
	100	00 0.30
North Contraction	140	00 0.21
	180	00 0.17
		of A. Jaeger-Waldau RC, ISPRA
imec	© in	Joachim John mec restricted 2008 28

Technology	Uniqueness / recent achievements	Main competitors
i-PERC	 Unique process (patented by IMEC) Closest to industrial implementation of all potential local-BSF approaches Highest efficiency results on thin large-area substrates (16.7%, 130 μm multi) 	ISE (LFC), but their process still relies or high-quality thermal oxide at rearside
IBC	 Link with manufacturer of ultra-thin ribbons (SolarForce) Rearside HIT-emitter 	UKON, ISE, ECN
Epitaxial cells	 Unique process based on porous Si reflector (patented by IMEC) and high-T CVD Highest efficiency results obtained on large area substrates – epitaxial emitter (14.9%) 	ISE Uni.Neuchatel – Juelich microcrystalline Si (low deposition rates
SionGlass	 Best worldwide results obtained with AIC- process (patented for use on ceramics) -8% Highest efficiency potential for thin crystalline Si films on non-Si carrier 	UNSW, HMI

Summary
 Face the challenge: Energy supply for 10 Billion people by using a carbon free and environment friendly energy generation
• The answer can only come from renewable energy
 Industry has understood that renewable energy is a chance and not a threat
 Europe has defined a strategic research agenda Clear commitments to a carbon free economy based on renewable energy generation.
 PV Aim: Reach grid parity as fast as possible by increasing the efficiency and reduce the cost of the solar cell.
imec Joachim John 42

