

UNIVERSITEIT·STELLENBOSCH·UNIVERSITY jou kennisvennoot · your knowledge partner

Ocean wave energy conversion

James Joubert Stellenbosch University

Wave Energy Forum 15 October 2010

Study motivation

Wave power

Rate at which energy is transmitted in the direction of wave propagation across a vertical plane perpendicular to the direction of wave advance

Waves are generated by wind

Wave height and period is a function of wind speed, duration and generation length (fetch)

World wind map

Global wave power resource

World Waves data/OCEANOR/ECMWF

Converter design

Inshore Wave Heights from 2.5m average up to 20m maximum

Wave Lengths from <u>75m</u> (7sec period) to <u>500m</u> (18sec period) and average of <u>225m</u> (12 sec period), even within one data set

Slide courtesy of Deon Retief

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

Wave energy density spectrum

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

Device types

- ① Shore-based
- ② Near-shore bottomstanding
- · ③ Floating; near-shore or offshore
- ④ Bottom-standing or submerged on not too deep water.
- ⑤ Submerged not far from a water surface
- combined with an energy storage (such as a pressure tank or water reservoir) and conversion machinery on land.

Deployment location

Power take-off: hydraulic ram, elastomeric hose pump, pump-toshore, hydroelectric turbine, air turbine and linear electrical generator

Challenges

Challenges

LIMPET

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

Breakwater WEC's

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

Stellenbosch wave energy converter (SWEC)

SWEC (cont)

Barriers for full scale deployment

- Oil price stabilised
- High capital cost
- Complex licensing & permit requirements

Incorporate SWEC principle into breakwater structure for existing/new port development

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

- Cost sharing between breakwater & WEC
- Reduced loadings on breakwater
- Simplifies EIA
- Supply clean, free energy to development

ShoreSWEC

Site selection

Granger Bay

17

Table Bay wave energy resource (cont)

Mean annual average wave power distribution of Table Bay based on 10 years of hindcast wave data

Table Bay wave energy resource (cont) RENEWABLE & SUSTAINABIL ENERGY STUDIES

Mean annual average wave power distribution of Table Bay based on 10 years of hindcast wave data

Numerical model: 2D Fluent wavemaker STAINABLE ENERGY STUDIES

1.00e+00 9.50e-01 9.00e-01 8.50e-01 8.00e-01 7.50e-01 7.00e-01 6.50e-01 6.00e-01 5.50e-01 5.00e-01 4.50e-01 4.00e-01 3.50e-01 3.00e-01 2.50e-01 2.00e-01 1.50e-01 1.00e-01 5.00e-02 0.00e+00 Contours of Volume fraction (water) (Time=3.5000e-02) Aug 26, 2010

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

Numerical model: 3D Fluent wavemaker STAINABLE

What lies ahead...

- Complete numerical model to optimise design parameters: chamber dimension, orientation, length etc.
- Physical model tests to verify numerical model and determine generation capacity
- Develop economic model

Conclusions

22

- Great opportunities for wave energy development in SA, but also barriers
- SA has a world class wave energy resource
- SA has an indigenous WEC designed for local conditions
- Opportunity to demonstrate SWEC conversion principle in port development
- Wave power focal zone exist in Table Bay

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIES

Thank you for your attention Any questions?

Stellenbosch Wave Energy Converter(SWEC)

