

Biochar – for the safe and long-term sequestration of CO₂ carbon

Presentation to the CRSES Forum on Carbon Capture and Storage [CCS] By Sudor Carbon Sciences

Critical comments on Carbon Capture and Storage [CCS]

- 1. Most of the proposed methods of carbon capture and storage [CCS] aim to separate and capture CO₂ directly from exhaust emissions before entering the atmosphere. The CO₂ is then pumped into and stored in deep subterranean geological formations.
- 2. These methods represent strategies to reduce emissions rather than remove CO_2 from the atmosphere.
- 3. Where conventional CCS [as in 1.] is used to capture and sequester CO₂ from biomass combustion the complete system, including photosynthesis to provide biomass, becomes a net carbon sink.
- 4. An even better option is the production and sequestration of biochar, for example, in the soil

$CO_2 \rightarrow photosynthesis \rightarrow biomass \rightarrow pyrolysis \rightarrow biochar \rightarrow soil$

A safe and effective method for carbon capture and storage

What is Biochar?

- "Biochar is a fine-grained charcoal high in organic carbon and largely resistant to decomposition.
- It is produced from pyrolysis of plant and waste feedstocks.
- As a soil amendment biochar creates a recalcitrant soil carbon pool that is carbon-negative, serving as a net withdrawal of atmospheric carbon dioxide stored in highly recalcitrant soil carbon stocks.
- The enhanced nutrient capacity of biochar-amended soil not only reduces the total fertilizer requirements, but also the climate and environmental impact of croplands."

[International Biochar Initiative Scientific Advisory Committee]

The production of biochar: the process of pyrolysis – combustion, ideally in the absence of oxygen

- Efficient pyrolysis converts 50% of biomass to char
- 40% is converted to bio-oil and bio-gas :- feedstocks for energy to electricity
- 10% is released as CO₂
- At 62% efficient energy production:
- Pyrolysis of 1 Gt of biomass carbon would provide energy equivalent of about 0.3 Gt fossil carbon, which
- Could be used to <u>offset</u> that amount of fossil carbon, while
- Sequestering 0.5 Gt as biochar

Important factors to assess the potential of biochar

- What is the longevity of the char in the soil?
 - \succ Will it resist oxidation to CO₂?
 - \succ Will it resist reduction to CH₄?
- What is the avoided rate of greenhouse gas emissions?
- How much biochar could be added to the soil?
- How much biochar could be produced by economically and environmentally acceptable means?
- It is a known fact that biochar worked into the soil dramatically increases the productivity of the soil.
 - How to optimize this effect?
 - If done on a mega-scale, what will the potential increase in global biomass and food crop production be?
 - To what extent will increased photosynthesis result in escalating CO₂ capture from the atmosphere?

The global situation – a big picture

- Current atmospheric increase of carbon: 4.0 Gt/y ± [G = Giga = 1 billion = 10⁹]
- > Of which 7.1 Gt/y from fossil fuel combustion and cement manufacturing
- Removed from the atmosphere: Oceans
 Terrestrial processes
 0.9 Gt/y
 TOTAL
 REMAINING
 4.0 Gt/y

The uptake by terrestrial processes can be increased significantly by managing the 60.6 Gt/y of biomass carbon fixed by photosynthesis [net primary productivity] of which 59.0 Gt/y is ultimately decomposed and 1.6 Gt/y is combusted

So, what if.....

- Of the 60.6 Gt/y that is fixed in usable form, 10% or 6.1 Gt/y could become available for pyrolysis [with additional biomass crops planted for the purpose]
- Pyrolysis would offset 1.8 Gt/y of fossil carbon and sequester 3.0 Gt/y as biochar
- Combined, enough to halt the increase and actually decrease the level of atmospheric carbon by 0.7 Gt/y.
- Even at half this level [i.e. 5% of annually fixed biomass] pyrolysis would be sufficient to decrease the global carbon cycle imbalance by 2.4 Gt/y.
- In combination with other sequestration options, the minimum goal of carbon neutrality could be achieved.

The situation in South Africa

- The purpose of this presentation is not to question the technological merits of conventional CCS, but rather to highlight the fact that there are other possibilities.
- If conventional CCS does not work as hoped, what is PLAN B?
- The time to start with PLAN B is NOW!
- Sequestering CO₂ as biochar into the soil should be considered as PLAN B.
- If PLAN A, i.e. conventional CCS, is allocated serious funding to develop, PLAN B should also warrant some funding.
- PLAN B will also have the benefit of improving agricultural productivity and on a large scale.
- Unproductive and marginal land could be brought into full production.
- Water utilization could be optimized.
- Long-term soil health and fertility could be achieved

PLAN B for CO₂ sequestration in South Africa [and the planet]

Impact of biochar sequestration into the soil on a mega scale – a South African scenario										
			Year 1	Year 2	Year 3	Year 4	Year 5			
Land	1 000	ha '000	1 000	2 000	3 000	4 000	5 000			
Biomass	50 t/ha	t '000	50 000	100 000	150 000	200 000	250 000			
Biochar	30%	t '000	15 000	30 000	45 000	60 000	75 000			
Carbon	80%	t '000	12 000	24 000	36 000	48 000	60 000			
CO ₂ sequestered	3.6	t '000	43 200	86 400	129 600	172 800	216 000			
Electricity output capacity	21	MW	7 143	14 286	21 429	28 571	35 714			
CO ₂ emitted during pyrolysis	12%	t '000	6 000	12 000	18 000	24 000	30 000			
Net CO ₂ sequestered		t '000	37 200	74 400	111 600	148 800	186 000			
Trading value@€5/t CO ₂		€	186x10 ⁶	372x10 ⁶	558x10 ⁶	744x10 ⁶	930x10 ⁶			
Biomass for sequestering CO ₂ during pyrolysis [NPP]	1.46	t '000	4 110	8 219	12 329	16 438	20 548			
Additional hectares needed towards carbon neutral	50 t/ha	ha '000	82	164	247	329	411			

PLAN B for CO₂ sequestration in South Africa – carbon trading potential by avoiding coal

		Year 1	Year 2	Year 3	Year 4	Year 5
Biomass	Mt	50	100	150	200	250
Electricity	MW	7 143	14 286	21 429	28 571	35 714
Electricity	MWh.10 ⁶	60	120	180	240	300
	kWh.10 ⁹	60	120	180	240	300
Energy [1 GJ=0.278MWh]	MJ.10 ⁹	216	432	648	863	1 070
Coal needed [@1kWh per 30 MJ]	kg.10 ⁹	7.2	14.4	21.6	28.8	35.7
CO_2 emitted by coal [@1kWh»1kgCO_2]	kg.10 ⁹	60	120	180	240	300
	t.10 ⁶	60	120	180	240	300
Carbon trading potential@€5 per t CO ₂ emitted by coal	ntial@€5 per €.10 ⁶ 300		600	900	1 200	1 500

Biochar: from biomass to recalcitrant carbon

The DT Mac-4 Machine – deep-till biochar into the soil

The technology for PLAN B exists – images from Precision Farming

Biochar deep-tilled into the soil: enhanced soil health and fertility

Biochar in water purification including constructed wetlands

Biochar stored in holes in the soil – farming on top

Conclusion

- 1. Biochar production and utilization systems is carbonnegative: it removes carbon dioxide from the atmosphere and stores it in stable soil carbon "sinks".
- 2. Biochar and bio-energy co-production from biomass can help combat climate change by a number of pathways, including:
- Direct sequestration of biochar in stable soil carbon pools
- Displacement of carbon positive fossil fuel energy
- Increase in global Net Primary Production [NPP] from increased soil fertility
- Reduction in nitrous oxide emissions
- 3. The scale of CCS using biochar into the soil is within reach.
- 4. The global CCS community should joint forces to achieve a goal of carbon negative for the planet.
- 5. Do not ignore PLAN B!!

Thanks for your attention and constructive participation, and remember.... ...tread lightly...

