Solar Resource Mapping in South Africa

Tom Fluri

Stellenbosch, 27 March 2009

Outline

- The Sun and Solar Radiation
- Datasets for various technologies
- Tools for Solar Resource Mapping
- Maps for South Africa
- Example of a Potential Assessment

THE SUN

- Distance from earth: 150 x 10⁶ km
- Diameter: 1.39 x 10⁶ km
- Surface temperature: ~5500 °C
- Age: around 4.6 billion years

Effects of the atmosphere on solar radiation

Causes of Variability in Solar Radiation

- Day/Night
- Seasons
- Weather
- Local Air Pollution
- Distance Earth-Sun (6.6%)
- Solar activity (1%)
 - Sun spots
- Climate Change
 - Global Warming
 - Global dimming
- El Niño

Radiation data for solar energy technologies

Global irradiation = Direct irradiation + Diffuse irradiation

Category	Schematic	Applications		
Direct normal irradiation DNI		 Concentrating Solar Thermal Power Concentrating PV Tracking PV 		
Global horizontal irradiation GHI		 Horizontal collectors (Agriculture) 		
Latitude tilt irradiation LTI		 Fixed PV Solar water heaters 		

Ground Measurements

Campbell-Stokes recorder

- Most common device
- Simple
- Only records sunshine hours

Solar radiation sensors

Global radiation

Pyranometer

- Thermopile
- Accuracy ±3% (daily sums)
- Slow response (>15s)

Solar radiation sensors

Diffuse radiation

- Either tracker or shadowring required
- Tracker is expensive
- Use of shadowring necessitates correction function

Solar radiation sensors

Direct radiation

Pyrheliometer

- Best accuracy for direct radiation measurements
- Shorter response time (5s)
- Tracker is expensive

Weather Stations in Different Regions

- with solar radiation measurement
- without solar radiation measurement

Example for hourly data

Ground Measurements

Summary

- Most accurate option
- Expensive
- High maintenance
- Time consuming
- Few stations in South Africa

01/07/2003 12:00 UTC Copyright 🖲 2003 EUMETSAT

Method

- Same images as for weather forecast can be used
- Extensive databases are available
- Data over longer time periods are available (20 years)

Method

Example

Summary

- Fairly accurate Break even of accuracy with ground measurement interpolation: 25-50 km
- Relatively cheap and quick
- Spatial and temporal resolution high enough for site evaluation
- Data over longer time periods are available (20 years)
- Only low resolution datasets have been created for SA

Solar Maps for SA

Based on Ground Measurements

- A solar radiation data handbook for Southern Africa (1990)
- South African Renewable Energy Resource Database – Annual Solar Radiation – CSIR, ESKOM, DME (1999)

Based on Satellite Data

- SWERA Solar resource data for Africa (2006) –
- NASA: Surface meteorology and Solar Energy (2008)
- PVGIS (2007)

Based on Satellite Data and Ground Measurements

• Meteonorm 6.1 (2009)

Photovoltaic Solar Electricity Potential in the Mediterranean Basin, Africa, and Southwest Asia

Comparison of Data Sets

Example Application – Potential Assessment for Concentrating Solar Power in SA

Exclusion Criteria:

Example Application – Potential Assessment for Concentrating Solar Power in SA

Exclusion Criteria:

Proximity to Transmission

Example Application – Potential Assessment for Concentrating Solar Power in SA

Results:		NC	FS	WC	EC
	Total Potential per Province [GWe]	510.3	25.3	10.5	1.6

Detailed map available at www.crses.sun.ac.za

Recommendation to Developers

Small installations

- Use various datasets
- Track new releases
- Measure solar radiation

Large installations

- Use available datasets to detect priority areas
- Order higher resolution data for promising sites
- Measure on most promising sites

Conclusions

- Several solar resource maps are available for SA
- Accuracy and resolution of publicly available data could be improved
- Satellite derived data present a good option to improve the quality of the available data
- More ground measurements are necessary

Conclusions

- Several solar resource maps are available for SA
- Accuracy and resolution of publicly available data could be improved
- Satellite derived data present a good option to improve the quality of the available data
- More ground measurements are necessary

Tom Fluri fluri @ sun.ac.za

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

