Mesoscale Wind Atlas of South Africa

Kilian Hagemann Climate Systems Analysis Group University of Cape Town Stellenbosch Seminar 27 March 2009

Presentation Overview

- Summary of my entire PhD (breadth, not depth)
 - Run MM5 at 18km resolution over SA
- Part 1) How model data was derived
 - Validation, optimisation of time period and configuration
- Part 2) Mesoscale Wind Atlas Results
 - Uncertainty, resource maps, potential estimation

Model Introduction

- MM5 non-hydrostatic regional/mesoscale climate model
- Community model developed at Penn State University (forecasting and climate research)
- Fully dynamic (time dependent) wind, temperature, pressure and humidity
- Takes into account MANY surface parameters (topography, roughness, albedo etc.)

Model Validation - Observations

Use most reliable 17 SAWS stations (10m)

Model Validation - Statistics

Wind speed and standard deviation bias
Daily cycle metrics – phase and amplitude
Yearly cycle mean absolute error (MAE)
Directional statistics – weighted MAE based on 12 sectors

Time Subsetting

- Cannot run model for 10-20 years at desired resolution
- 1 year too short, not representative...
- Solution: find "optimal 365 day time period"
 - Details in my PhD
 - Best match: 20 March 1996 19 March 1997
 - Cross validation with 17 stations 1993-2004 => 0.2m/s systematic bias, may be corrected later

Parametrisations – overview

- Large effort spent on determining "optimal" configuration of model
 - Dozens of "sensitivity runs" over limited EC domain
 - Investigating performance in terms of:
 - All validation statistics
 - Model factors such as LSM/PBL combinations
 - Grid FDDA, observational nudging, cumulus

Parametrisations – LSM/PBL East London daily cycle

Final Model Domains

Fundamental Grid Constraints

Surface (topography, roughness etc.) smoothed out (18km) Cannot distinguish between points within given grid cell Gives good area *average,* not necessarily point estimate

Data availability

- 1 year (representative of climatology)
- Hourly wind speed and direction
- 10m, 60m, 80m and 100m above ground (any other 10m < height < 10km extractable)
- Coverage: entire South Africa (including offshore)
- Time series, summary statistics, GIS raster maps and much more

10m Wind Speed Bias

Alexander Bay Bloemfontein Beaufort West Cape Town East London Kimberley Langebaanweg Lamberts Bay Nelspruit Port Alfred Port Elizabeth Pietersburg Thabazimbi \mathbf{X} Standard + 4xFDDA

10m Daily Wind Speed Cycles

Alexander Bay Bloemfontein Beaufort West Cape Town Durban East London George Irene Kimberley Langebaanweg Lamberts Bay Nelspruit Port Alfred Port Elizabeth Pietersburg Thabazimbi Vryheid **X** Standard + 4xFDDA

Coastal Wind Speed Cycle (Alexander Bay)

Inland Wind Speed Cycle (Bloemfontein)

Uncertainty Summary

- Wind speed
 - Bias ~ 0.2m/s (model too strong)
 - Error +/- 0.7m/s (68% conf. Int.)
- Daily Cycles
 - Coast within +/- 1h of peak
 - Coast bias 18% of peak, +/- 20% (68% conf.)
 - Inland not reliable
 - => useful enough for daily electricity demand profile calculations (Andrew Marquard)

Average 10m Wind Speed Maps I

Diab 1995

18km MM5 2008

Average 10m Wind Speed Maps II

Eskom/CSIR 2001

18km MM5 2008

Total Potential Calculation

- Integrate total wind potential by considering:
 - Proximity to roads (minimum secondary)
 - Proximity to transmission lines (>=66kV)
 - Minimum capacity factor (2MW Vestas turbine)
 - given hub height (60m, 80m or 100m)
 - Density of 1 turbine per km²

Total Potential Calculation

Three scenarios:

Scenario	Maximum roads distance	Maximum transmission distance	Hub Height	Minimum capacity factor
pessimistic	3km	3km	60m	35%
realistic	4km	4km	80m	30%
optimistic	5km	5km	100m	25%

Annual Electricity Generation				
20.0 TWh	8.7%			
80.5 TWh	35.1%			
157.2 TWh	68.5%			

Future Plans

SAWEP wind atlas project
R25m, 4 year project
Multi-stakeholder

Risoe, UCT, CSIR, SANERI, SAWEP, SAWS

Based on measurements AND mesoscale modelling

SAWEP Mesoscale Component

- Phase 1 known methodology by Risoe
 - First map by next year (?)
- Phase 2 fully dynamic simulations, new methodology developed by myself, UCT and Risoe
 - To be used all over the world
 - Completed by 2012

My Current Business

- Will NOT consult going forward
- PhD available from UCT
- Busy setting up a wind power development business
- Integrating existing data, current knowledge and future work into business
- If you want the data, expertise and/or consulting feel free to invest ;-)

Questions?

Fire them to kilian@windpower.co.za ...