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Abstract 
A heat source can be considered as the Brayton cycle’s life support. This heat source 
need not be from combustion, which is mostly the case, but can be extracted from solar 
energy. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat 
transfer across a finite temperature difference and fluid friction. The optimum geometry 
of the receiver and recuperator can be established by maximizing the net power output 
of the system. In this paper the Second Law of Thermodynamics and entropy generation 
minimization is applied to optimize the component geometries. The dynamic trajectory 
optimization method is used. Standard micro-turbines and a range of concentrator radii 
are considered. Results show the optimum operating conditions and minimum entropy 
generation as a function of system mass flow rate. For a system with an optimized 
geometry and an optimized operating condition, the solar receiver is the main contributor 
to the total rate of entropy generation and the irreversibilities are spread throughout the 
system in such a way that the internal irreversibilities are almost three times more than 
the external irreversibilities. For a specific environment and parameters there exists an 
optimum receiver and recuperator geometry such that the system produces maximum 
net power output. 
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1. Introduction 
South Africa, like Southern Africa, has a lot of potential to generate large amounts of its 
power from solar technologies. Concentrated solar power systems utilize the 
concentrated power of the sun as a heat source to drive a power-generating turbine. The 
Brayton cycle generates power with the use of a gas working fluid. For a water-scarce 
country like South Africa, the Brayton cycle seems very attractive. Fluri (2009) showed 
that the total potential generation capacity of CSP (Concentrated Solar Power) in South 
Africa, is more than 500 GW. Mills (2004) envisaged that emphasis may shortly shift to 
solarised Brayton micro-turbines from Dish-Stirling technology due to high Stirling engine 
costs. Chen et al. (2007) compared the efficiency of the Brayton cycle with those of other 
power cycles and found that it is definitely worth studying. The highest-efficiency Brayton 
cycles are regenerative cycles with low pressure ratios. Counterflow heat exchangers 
should be used as recuperators (Shah, 2005) and is recommended for solar-thermal 
application (Kreith and Kreider, 1978). According to Bejan (1982) counterflow heat 
exchangers finds numerous applications in regenerative heating associated with Brayton 
cycles. Shah (2005) regards the Honeywell turbo-machinery as worth mentioning when it 
comes to their development expertise in micro-turbines in recent history. 
The Brayton cycle usually requires large receivers or cavity receivers due to low gas 
heat transfer coefficients. A black solar receiver, mounted at the focus of a parabolic 
dish concentrator can be sized such that it absorbs the maximum amount of heat (Stine 
and Harrigan, 1985). Convection losses can be drastically reduced by employing a 
receiver mounted in a cavity and selective coating for reducing the thermal losses due to 
radiation. Different classical cavity geometries were investigated by Shuai et al. (2008). 
Prakash et al. (2009) investigated heat losses from a solar cavity receiver at different 
inclination angles of head-on and side-on winds and found that the thermal and optical 
losses occurring from an open cavity solar receiver are less when compared to other 



types of receivers. Reddy and Sendhil Kumar (2008) compared different types of cavity 
receivers numerically and found that their modified cavity receiver experiences lower 
convection heat losses than the other receivers and suggest that it may be preferred in a 
solar dish collector system. A numerical investigation of natural convection heat loss 
(Sendhil Kumar and Reddy, 2007), an inclusion of the contribution of radiation losses 
(Reddy and Sendhil Kumar, 2008) and an improved model for natural convection heat 
loss was presented for the modified cavity (Reddy and Sendhil Kumar, 2009). 
Bejan (1982), Bejan et al. (1996) and Oğulata et al. (2000) state that the irreversibilities 
of convective heat transfer are due to heat transfer across a nonzero temperature 
difference and fluid friction. For a heat exchanger, Yilmaz et al. (2001) include the losses 
due to the heat exchange with the environment. Bejan (1982) proposed ways of 
reducing irreversibility production in heat exchangers. For a solar receiver configuration, 
Bejan (1982) mentioned three main features that cause thermodynamic irreversibilities in 
its operation: sun-receiver heat-exchange, receiver-ambient heat loss and the internal 
irreversibility in the receiver. According to the Gouy-Stodola theorem the maximization of 
exergy output is identical to the minimization of total entropy generation “in the column of 
cross-section extending from the environment temperature (T0) to the apparent sun 
temperature as an exergy source (T*)” (Bejan, 1982, p. 213). Bejan (1997) investigated 
the entropy generation rate involved with the transformation of monochromatic radiation 
into blackbody radiation and scattering.  
An optimal receiver temperature for maximum power per unit area can be determined in 
three ways: by maximizing the net power output, minimizing the entropy generation rate, 
or by maximizing the exergy streaming (Bejan, 1997). The total rate of entropy 
generation can be minimized by selecting the physical dimensions of heat exchanger 
surfaces to get the best optimal design that fits a particular application. Entropy 
generation minimization (EGM) has been used in various internal flow optimization 
studies such as: The optimum tube diameter or Reynolds number for a tube (Bejan, 
1982 and Bejan et al., 1996); The optimal Reynolds number for single-phase, fully 
developed, laminar and turbulent flow with constant heat flux (Ratts and Raut, 2004); 
and the optimum channel geometries with constant wall temperature or constant heat 
flux (Zimparov et al., 2006a, 2006b and 2006c). Entropy generation and its minimization 
has also been expressed for numerous heat exchangers and heat transfer surfaces: 
counterflow and nearly-ideal heat exchanger neglecting fluid friction (Sarangi and 
Chowdhury, 1982), tubular heat exchangers (Cornelissen and Hirs, 1997 and Zimparov, 
2001), heat exchangers restricted to perfect gas flows (Hesselgreaves, 2000), balanced 
cross-flow recuperative plate type heat exchanger with unmixed fluids (Oğulata et al, 
2000); and a parallel-plates ideal gas counterflow heat exchanger (Ordόñez and Bejan, 
2000). Hesselgreaves (2000), Oğulata et al. (2000) and Ordόñez and Bejan (2000) 
suggest the use of the ε-NTU method, based on the Second Law of Thermodynamics, to 
get the outlet temperatures and the total heat transfer from the hot fluid to the cold fluid. 
Heat exchanger optimization using EGM has been utilized in various applications: A 
thermoacoustic engine (Ishikawa and Hobson, 1996); A condenser in a vapor-
compression-cycle refrigeration system for environmental control of aircraft (Shiba and 
Bejan, 2001); and cryogenics (Lerou et al., 2005). 
Exergetic analysis in solar thermal application has been done by Narendra et al. (2000) 
and Jubeh (2005). These analyses were respectively done for a solar thermal Rankine 
heat engine and a regenerative Brayton cycle with isothermal heat addition and 
isentropic compressor and turbine. Various authors have emphasised the importance of 
the optimization of the global performance of a system, by minimizing the sum of the 
irreversibilities from all the different components or processes of the system (spreading 
the entropy generation rate through the system by optimally sizing the hardware, in 
stead of optimizing components individually). These authors include Zimparov et al. 



(2006, p. 1620 and p. 4840), Bejan (1996 and 1997), Bejan et al. (1996, p. 5), Shiba and 
Bejan (2001) and Ordόñez and Bejan (2000). 
The purpose of this paper is to optimally size the geometry of a cavity receiver and 
recuperator in a recuperative solar thermal Brayton cycle, such that the system produces 
maximum net power output. Systems producing a net power output of 2-100 kW are 
analyzed. An analysis will be done by looking at the solar thermal power system as a 
whole and minimizing the entropy generation rate through the whole system, instead of 
optimizing components individually. This holistic view can hold valuable data and 
understanding into the optimal distribution of entropy generation throughout the small-
scale recuperative Brayton cycle. The dynamic trajectory optimization method is used to 
get the optimum receiver and recuperator geometries. Standard micro-turbines are used 
in the analysis, which keeps the study relevant and useful. 
 
2. Model 
The open and direct solar thermal Brayton cycle using a recuperator is shown in Fig. 1. 
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Figure 1.  The open and direct solar thermal Brayto n cycle using recuperation 
 
2.1. Solar collector and receiver 
The collector consists of a parabolic concentrator and modified cavity receiver proposed 
by Reddy and Sendhil Kumar (2009). The convection heat loss takes place through the 
receiver aperture. An area ratio of 8 (receiver inner wall area, Aw, to aperture area, Aa) is 
recommended by Reddy and Sendhil Kumar (2009) as it was found to be the ratio that 
gives the minimum heat loss. Since the surface area of a sphere is 24 rπ , it is assumed 
that the radius of the receiver can be calculated with Eq. 1.  

( ) 2/3/ DAAr aw =+= π         (1) 



The receiver inner surface is made up of closely wound copper tubing with diameter,  
Dh,rec, and length, Lrec. These tubes are placed very closely to touch each other to form a 
continuous hemispherical surface. The working fluid is pumped concentrically through 
these tubes, as can be seen in Fig. 2. For minimum heat loss Eq. 2 arises. 
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Figure 2. Geometry of the cavity receiver used in t he analysis 

 
The aperture diameter ( nW ) is calculated with Eq. 3 since Aw = Dh,recLrec.  
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According to Reddy and Sendhil Kumar (2008) the ratio of radiation heat loss to 
convection heat loss is a function of receiver inclination and varies between 
approximately 0.9 and 1.33. For this analysis it is assumed that convlossradloss QQ −− ≈ &&  or 

convlossloss QQ −≈ && 2  for the modified cavity receiver. From Reddy and Sendhil Kumar (2009, 

p. 1889), and for Aw / Aa = 8, the Nusselt number for a 3-D receiver model can be 
calculated using Eq. 4, where β is the receiver inclination, k is the thermal conductivity of 
air and DGr  is the Grashof number based on the receiver diameter ( D ). 
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Eq. 5 shows the total heat loss from the wall temperature ( wT ) to the surroundings ( ∞T ).  
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2.1.1. Sizing of receiver aperture 
The sizing algorithm of Stine and Harrigan (1985) is used for receiver aperture sizing. 
The sizing algorithm uses the collector area, rim angle ( rimψ ), specular reflectance, 

inclination, irradiance, parabolic concentrator error and heat loss to determine the net 
absorbed heat as a function of the receiver aperture diameter.  Starting at a rim angle of 



0° through to an angle of rimψ , in increments of 1°, the amount of intercepted so lar 

energy per segment of collector area is computed for a range of aperture diameters 
using a flux capture fraction with standard deviations of the total angular error. The total 
absorbed heat is the total intercepted energy minus the total heat loss. The amount of 
heat absorbed, netQ& , is a function of the cavity aperture diameter, nW . This function can 

be numerically approximated with the Discrete Least Squares Approximation Method 
(Burden and Faires, 2005, p. 482) and is shown in Eq. 6.  
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There exists an aperture diameter which absorbs a maximum amount of solar energy for 
the system. The specific aperture size is coupled to the receiver’s channel dimensions 
(its length, and tube diameter). The shadow of the receiver and its insulation (as a 
function of aperture size) is also accounted for when calculating the available energy at 
the receiver. Heat loss through conduction at the cavity receiver through the insulation is 
usually small. It was assumed that the conduction heat loss is 10% of the sum of the 
radiation and convection heat loss.  
 
2.2. Recuperator 
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Figure 3. Geometry of recuperator channels 

 
A counter-flow plated recuperator is used. The design and assembly will be as simply 
illustrated in Fig. 3, where only a few plates are stacked to create flow channels. The 
geometry variables for the recuperator to be optimized are the channel hydraulic 
diameter, Dh, tube length, L, and aspect ratio, a/b. A single channel has a divided mass 
flow rate and As = 2aL. The regenerator efficiency can be calculated using the ε-NTU 
method. The number of channels (n) in the recuperator depends on the recuperator 
height (H), channel height (b) and thickness of the channel separating surface (t). For 
the analysis t = 1 mm. Thus the number of channels can be determined with Eq. 7. 
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Eq. 8 gives the mass flow rate per channel. 
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The surface area (As) for a channel is given in Eq. 9. 
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For the recuperator the Reynolds number for a rectangular channel is shown in Eq. 10.  
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The Gnielinski equation (Eq. 11) (Gnielinski (1976), cited in Çengel (2006)) can be used 
to determine the Nusselt number since small Reynolds numbers are most likely to be 
present. The Petukhov equation (Eq. 12) (Petukhov (1970), cited in Çengel (2006)) is 
used to calculate the friction factor. Pr is the Prandtl number. 
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The recuperator efficiency is calculated using the ε-NTU method with the fouling factor, 
Rf = 0.004. With the use of the friction factor, and the definition of the pressure drop, Eq. 
13 arises, where µ  is the dynamic viscosity and ρ  is the density of the fluid. 
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2.3. Compressor and turbine  
Standard micro-turbines are considered for the analysis. According to Snyman (2009), 
the pressure ratio ( 12 / PPr = ) should be chosen to be a parameter when considering 
geometric optimization. The mass flow rate through the system depends on the 
compressor, which in turn depends on the turbine. The compressor efficiency, mass flow 
rate and pressure ratio, are intrinsically coupled to each other - as can be seen from 
standard micro-turbines (Garrett, 2009). The compressor pressure ratio as a parameter 
fixes the mass flow rate and compressor efficiency as parameters. The highest 
compressor efficiency is on the island in the middle of a compressor map (between two 
mass flow rate values: lowm&  and highm& , and between two pressure ratio values: lowr  and 

highr ). The pressure ratio ( r ) – mass flow rate ( m& ) relation can be approximated with a 

straight line on this island (Eq. 14).  
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An optimum pressure ratio, for a specific micro-turbine, exists which would (with its 
optimized geometry) give the maximum net power output for the system. An objective 



function in terms of variable geometry (using geometry variables from all over the 
system) can now be compiled using parameters. The maximum of the objective function 
can then be found at different parameter values. 
 
2.4. Temperature and pressure fields  
Before constructing the objective function, the temperature and pressure fields must be 
known. The assembly of these fields requires an iteration. Firstly, T1 = 300 K and P1 = 80 
kPa (see Fig. 1). The temperatures and pressures in all the ducts are calculated with an 
assumed temperature loss or pressure drop which is small. The iteration starts off with 
T5 = 800 K. Eqs. 15, 16, 17 and 18 and the recuperator efficiency are employed to 
calculate the remaining unknowns. 
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The iteration continues until the error is smaller than 0.001. When the iteration is done, 
the temperature and pressure fields are established and the objective function can be 
constructed. 
 
2.5. The objective function 
The Gouy-Stodola theorem states that the lost available work (exergy destruction) of a 
system is equal to the entropy generation in the control volume. Thus, when the 
maximum net power output that can be delivered by the system is required, the sum of 
the generated entropy rate in the system should be considered. The finite heat transfers 
and pressure drops in the compressor, turbine, recuperator, receiver and ducts are 
identified as entropy generation mechanisms. The entropy generation rate involved with 
the transformation of monochromatic radiation into blackbody radiation is neglected, 
since solar radiation falls in a wavelength band which is close enough to the minimum 
entropy generation as shown by Bejan (1997). For the analysis in this work, the 
equivalent temperature of the sun ( T* ) as an exergy source, will be assumed to be  
2470 K, so that the entropy generation due to scattering can be neglected. Scattering 
decreases the monochromatic radiation temperature of the sun to between 7 and 70% 
which causes entropy generation (Bejan, 1997). 
When doing an exergy analysis for the system and assuming that the velocities and 
height at the inlet and outlet are equal (V1 = V11 and Z1 = Z11), the objective function can 
be assembled in terms of the temperature and pressure field. The function to be 
maximized (the objective function), is netW&  (the net power output). Eq. 19 shows the 

objective function in terms of the temperature and pressure fields. The entropy 



generation rate for each component is added and is shown in block brackets. Note that 
each temperature and pressure shown below can be written in terms of the geometry 
variables as was explained in the previous section. Note that R is the gas constant and 
cp0 is the specific heat. 
 

=netW&  

( ) ( )111001110 /ln TTcTmTTcmQ ppnet &&& −−+  

( ) ( )[ ]
compressorp PPRmTTcmT 212100 /ln/ln && +−−  

( ) ( )[ ]
232323000 /ln/ln/

Ductploss PPRmTTcmTQT &&& −+−  

( ) ( )[ ]
454545000 /ln/ln/

Ductploss PPRmTTcmTQT &&& −+−  

( ) ( )[ ]
676767000 /ln/ln/

Ductploss PPRmTTcmTQT &&& −+−

( ) ( )[ ]
898989000 /ln/ln/

Ductploss PPRmTTcmTQT &&& −+−

rrecuperato

loss

kk

p TQ
PP

PP

TT

TT
cmT














+























−

−

0

/)1(

39

410

39

410
00 /ln &&

( ) ( )[ ]
ctorsolarcollep PPRmTTcmT 565600 /ln/ln && −−    

( ) ( )[ ]
turbinep PPRmTTcmT 878700 /ln/ln && +−−       (19) 

 
2.6. Constraints 
The concentration ratio between collector area and aperture area, 100≥CR . Therefore 
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Eq. 21 prevents that the receiver loses its cavity shape, by only allowing a minimum of 
two diameters in the distance between the aperture edge and the edge of the receiver.  
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The cavity receiver tubes are constructed using copper. The surface temperature of the 
receiver tubes should stay well below its melting temperature. A maximum temperature 
of 1200 K is identified for the analysis by considering Garrett (2009) and Shah (2005). 
The surface area of a channel and the Dittus-Boelter equation (Dittus and Boelter 
(1930), cited in Çengel (2006)) help to construct Eq. 22, which is the maximum surface 
temperature of the receiver.  
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The longer the recuperator the more beneficial it is to the system. There needs to be a 
constraint on its length. To make sure the system stays compact, the recuperator’s 
length should not exceed the length of the radius of the dish. 
 
3. Research Methodology 



There are five geometric variables to be optimized: The cavity receiver tube diameter 
(Dh,rec), the tube length of the cavity receiver (Lrec), the hydraulic diameter of the 
recuperator channels (Dh), the length of the recuperator channels (L) and aspect ratio of 
the recuperator channels (a/b). The objective function (net power output of the system) 
in terms of the scaled geometry variables, parameters and constants is maximized using 
the dynamic trajectory optimization method by Snyman (2009) in MATLAB, with unit step 
size and convergence tolerance of 1x10-7. The optimization algorithm, LFOPC by 
Snyman (2000, cited in Snyman, 2009, p. 101), requires the gradient of the objective 
function in each variable. The gradient of the function for each of the five variables in 
vector X, can be obtained with the derivative function where the step size, h = 8101 −× . 
Optimization of the geometry variables was done for each combination of the following 
parameters:  

� a range of parabolic dish radii (R = 3 - 9 m) 
� a range of micro-turbines from Garrett (MT = 1 – 45) each having its own range 

of pressure ratios (along the line of highest compressor efficiency on the 
compressor map of a specific micro-turbine). 

A data point was created at each micro-turbine pressure ratio (in increments of 0.1) for 
each of the above combinations. Each data point represents an optimized system – a 
system with maximum net power output and optimized receiver and recuperator 
geometries. In Table 1 the default values can be seen, for which these results were 
generated. 
 
Table 1. Values used for default analysis and for i nspection 
Environmetal 
condition or 
parameter 

Symbol  Default Value  Inspected 
value 

Unit  

Surrounding 
temperature  

T0 300 315 K 

Average Irradiance (I) I 1000 1200 W/m2 
Wind factor (w) w 1 (no wind) 10  
Atmospheric Pressure  P1 80 000 100 000 Pa 
Concentrator rim angle  

rimϕ  45 30 degrees 

Receiver inclination  β  90 45 degrees 

Recuperator Height  H 1 0.5 m 
 
The effect on the optimum system, when each of these constants is changed 
individually, is also investigated and included in the results. Also note that the 
concentrator specular reflectivity is 0.93 and the concentrator error is 0.0067 mrad. The 
recuperator material has conductivity of 401 W/mK.  
 
4. Results 
Consider firstly the default settings. For all the optimized data points (all R, and all 
operating points of all the micro-turbines) the optimum recuperator channel mass flow 
rate behaves in a specific way relative to the mass flow rate of the system. This behavior 
can be seen in Fig. 4 (showing only R = 4, 6 and 8 m for clarity) and is explained in the 
following paragraph. Take note that each data point in Fig. 4 has an optimum geometry 
and gives maximum net power output at its specific mass flow rate. When inspecting Fig. 
5 (again, R = 3, 5, 7 and 9 m are not shown, but behaved similarly), one can see that for 
all the data points, the optimum NTU increases as the system mass flow rate increases 
until it reaches its maximum. This means that it is most beneficial for a system with small 
mass flow rate, to have a small NTU. The following paragraph explains why. 
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Figure 4. Optimum recuperator channel mass flow rat e (R = 4, 6 & 8 m) 
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Figure 5. Optimum NTU for all data points (R = 4, 6  & 8 m) 

 
In Figs. 4 and 5, the specific data points for micro-turbine 41 with R = 8 m is shown. For 
this micro-turbine, the maximum net power output and minimum entropy generation 
rates are shown in Fig. 6. It shows how the irreversibilities are optimally spread out 
through the system. The behavior of this micro-turbine is explored, to better understand 
Figs. 4 and 5. The optimum external irreversibilities in Fig. 6 seem to be at a maximum 
when the mass flow rate is small. For high external irreversibilities, T11 must be high, 
which means that rrecuperatoη  should be small. This is why the optimum NTU is small at 

small mass flow rates as shown in Fig. 5. The optimum NTU increases as the mass flow 
rate increases. The optimized data shows that the small NTU is established with the use 
of a small surface area, large hydraulic diameter and large recuperator channel mass 
flow rate, which increases respectively until the maximum recuperator length constraint 
is reached (around 0.45 kg/s in Fig. 4). A large hydraulic diameter also keeps the 
pressure drop and fluid friction irreversibilities low for the recuperator. After the length 
constraint is reached, the recuperator mass flow rate and hydraulic diameter decreases 
as the mass flow rate increases, to ensure an increase in NTU. This is utilized until the 
friction irreversibilities grow too big at larger mass flow rates.  
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Figure 6. Optimized system (MT = 41, R = 8) : (a) –  Total entropy generation rate. 
(b) – Contribution to total genS&  due to temperature difference. (c) – Contribution to 

total genS&  due to frictional pressure drop. (d) – Irreversibi lities and available power 

 
When considering the solar receiver irreversibilities (Fig. 6), it is clear that the receiver 
performs optimally when the irreversibilities due to friction are as small as possible. The 
downward irreversibility slope for the receiver is due to an increase in the NTU, which 
increases T5. The optimum T6 goes to the maximum temperature it can be (due to 
maximum receiver surface temperature constraint), which means that the irreversibilities 
due to temperature difference in the receiver, can decrease as the mass flow rate 
increases. Eventually the NTU reaches its maximum (Fig. 5). For increasing mass flow 
rate, the irreversibilities due to temperature difference increases as a function of mass 
flow rate only. At the maximum NTU point, the recuperator channel mass flow rate is 
again utilized to be increased as the system mass flow rate increases, to keep the NTU 
at its maximum. In most of the cases, the maximum net power output in the operating 
range of the micro-turbine, was found at a mass flow rate close to this point or at higher 
mass flow rates. To keep the NTU constant, the hydraulic diameter is also kept constant, 
but increases slightly as the system mass flow rate increases, to keep the pressure drop 
irreversibilities small. This in turn forces the recuperator mass flow rate to also increase 
slightly as the system mass flow rate increases, as can be seen from Fig. 4. At the high 
mass flow rates it seems to be more beneficial for the system to have larger receiver 



irreversibilities due to temperature difference. For this reason there is a decrease in the 
NTU (and T5) at high mass flow rate. 
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Figure 7. Optimum pressure drop in receiver and rec uperator channel 

 
Fig. 7 shows again the different phases of the system as a mass flow rate function of 
micro-turbine 41. It is interesting to note that for the optimum system, the pressure drop 
of the receiver is larger than the pressure drop in the recuperator when the mass flow 
rate is small. This changes at a specific mass flow rate, where after it is optimal for the 
recuperator pressure drop to be larger than the receiver pressure drop. Similar behavior 
was found for the other micro-turbines with R = 8 m.  
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Figure 8. Optimum friction factor in receiver and r ecuperator 

 
It was found that for R = 8 m, there exists an optimal friction factor for the receiver and 
recuperator flow channels, which was similar for each system using a different micro-
turbine (Fig. 8). The optimum receiver friction factor decreases as a function of system 
mass flow rate while the recuperator friction factor increases, until it reaches a maximum 
where after it slowly decreases with system mass flow rate. The optimum recuperator 
friction factor is roughly 2.5 times larger than the optimum receiver friction factor. 
From Fig. 6 it follows that the largest maximum net power output for the system (or 
optimum operating point) is at a point where the internal irreversibilities are 
approximately three times larger than the external irreversibilities. This result was also 
found for all the other combinations of collector radii and micro-turbines where a highest 
net power output could be identified. This result can be approximated for all collectors 
and micro-turbines with an optimum operating condition in this analysis with Eq. 23, 
where ( ) ( ) 3/int ≈= optextoptW IIC .  
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Figure 9.  Cw as a function of the system mass flow rate 
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Figure 10. The effect of different conditions on th e optimum performance of micro-

turbine 41 and R = 8 m. 
 

Fig. 9 shows that CW mostly increases as the mass flow rate increases. The rate of 
increase decreases as the collector radius increases. Fig. 9 shows that 2.4 ≤ CW ≤ 4 



depending on the mass flow rate. Other data points which are not at an optimum 
operating point, or close to one, do not fall in this range. 
Fig. 10 shows the effect of environmental conditions and changed constants, on the 
optimum spreading of irreversibilities (MT = 41, R = 8 m). Note that from above and left 
in the figure the following are shown: Optimum absorbed heat, internal and external 
irreversibilities and maximum net power output. Most of these results did not differ much 
from the results of the default, however, usually the optimum geometry was changed to 
accommodate the change. Note that CW is again approximately three, even for extreme 
conditions such as an irradiance of 1 200 W/m2 and extreme wind. Also note how the 
wind effects the absorbed heat at smaller system mass flow rates. The wind calls for a 
smaller aperture diameter which constrains the amount of heat absorbed. 
 
5. Conclusions and recommendations 
Optimum recuperator and receiver geometries and optimum system operating conditions 
were established in the analysis, using the dynamic trajectory optimization method for 
different combinations of collector radius and standard micro-turbines. These results 
show how the irreversibilities are spread throughout the system optimally, so that the 
system can produce maximum power output. It was found that the optimum NTU 
increases with the system mass flow rate until it reaches a maximum, where after the 
NTU decreases slightly. A specific behavior of optimum recuperator channel mass flow 
rate as a function of system mass flow rate was seen as a result of optimum NTU 
behavior. It was noted that the internal irreversibilities of the optimized systems, were 
always more than the external irreversibilities. It was found that the maximum net power 
output is produced by the system when the internal irreversibilities are approximately 
three times more than the external irreversibilities. Results showed that the pressure 
drop of the receiver is larger than the pressure drop in the recuperator when the mass 
flow rate is small, but this changes around when the mass flow rate is large. An optimal 
friction factor for the receiver and recuperator flow channels was identified. The effect of 
environment and condition changes, on the optimal system performance, was 
investigated. Most of these results did not differ much from the results of the default, 
since the optimum geometry was changed to accommodate for external change. The 
results give insight into the optimal behavior and geometry of a small-scale, recuperative 
solar thermal Brayton cycle, limited to challenging constraints. These results can be 
considered in the preliminary stages of design. 
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