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Preface

- sCO; Brayton cycle promising alternative

to steam Rankine cycle

- Can be integrated efficiently with CSP
at small and large scales

- Receiving attention internationally

- Early stages of development

- Many challenges yet to be overcome

IIIIIIIIIIII
@' STERG SN
W/ S B Rmm B RS EWNY STELLENBOSCH
SOLAR THERM/ NERGY BN\ UNIVERSITY

ESEARCH GROU 1918-2018

ttttttt



Contents
Background
Objectives
Methodology

NW N S

Results

visit concentrating.sun.ac.za

IIIIIIIIIIII
@' STERG SN
W/ S B Rmm B RS EWNY STELLENBOSCH
SOLAR THERM/ NERGY BN\ UNIVERSITY

ESEARCH GROU 1918-2018




The sCO; Brayton Cycle
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M. Utamura. Carbon dioxide: Supercritical power. http://www.hyoka.kohotitech.ac jp/eprd/recently/research/448_en.html
Dostal, V., Driscoll, M. & Hejzlar, P. 2004. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. Technical Report MIT-ANP-TR-100, MIT.
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A CSP-sCO; Brayton Cycle System
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Objectives

Optimisation

CSP-sCO;
System

Design Control

visit concentrating.sun.ac.za

IIIIIIIIIIII
@' STERG SN
W/ S B Rmm B RS EWNY STELLENBOSCH
SOLAR THERM/ NERGY BN\ UNIVERSITY

ESEARCH GROU 1918-2018




Design
e For a known power output, determine:

mass flow rate, temperatures, pressures
speed, blade angles, -radii

lengths, flow areas

e Consolidate components into cycle
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Optimisation

temperatures
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flow rate pressures turbomachinery
N / / efficiency
operating CYCLE
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blade / heat
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Control
e Solar radiation level:

e Environmental variables: .
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e Operational procedures:
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Methodology: Principle of Modelling

Independent Dependent

Variables MODEL Variables

5 components
3 model types

1. Turbine

2. Compressor 1. Steady-state Designh-point
3. Recuperator 2. Steady-state Off-design
4. Heat sink 3. Transient

5. Solar Receiver
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Turbomachinery Models
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Dixon, S.L. and Hall, C.A. 2014. Fluid Mechanics and Thermodynamics of Turbomachinery. Oxford: Elsevier (7th Edition).
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Heat Exchanger Models . ..
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Bird, R.B., Stewart, W.E. and Lightfoot, E.N. 2002. Transport Phenomena. New York: Wiley (2nd Edition).
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Results: Turbine Optimisation
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Results: Turbine Performance Maps
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Results: Compressor Optimisation
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Results: Recuperator
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Results: Solar Receiver Simulation
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Results: Solar Receiver Simulation
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Review and Conclusion 0®

- sCO2 Brayton cycle
» promising new technology
» can be integrated with CSP

- Objectives
» integrated approach to the design, optimisation and
control of CSP-sCO; systems

- Methodology
» Modelling of cycle components
» Different types of models
» Velocity triangles and control volumes
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