

PV Penetration in the Western Cape Eskom, CoCT, U Stel., UCT, CPUT workshop: Oct 2018

MJ Chihota, CT Gaunt

Power Systems Research Group, UCT

Background

- Increased installation of PV systems, globally as well as in SA.
- Projected increase of the PV share in the energy mix (also reflected in IRP 2017)
- Concern over the implications for networks, the severity, and mitigation are trending topics of debate

Research Objectives

- 1. Determine the technical performance of distribution networks with high PV penetration
- 2. Develop a methodology to assess the PV hosting capacity of LV networks
- 3. Determine the limits for household injections

System model

Input and solution technique:

Inputs	Approach	Techniques	Model		
Uncertain	Probabilistic	Statistical analytical	Pdf's		
		Simulation	Monte Carlo		

Load flow (LF)

Deterministic (DLF)

Use defined, specified and non-random values to specify system inputs.

Based on mean ADMD/hh at system MD.

Uses empirical factors to account for uncertainty.

Probabilistic (PLF)

System inputs defined through pdfs/cdfs.

Explicitly accounts for uncertainty and variability.

Reflect uncertainty in system output states (risk).

Better awareness of actual network conditions.

Probabilistic framework

Objectives:

- 1) cater for load stochasticity
- 2) include the variability of PV-DG power production
- 3) simulate the uncertainty in the location and capacity of future PV-DG installations

Components:

- Probabilistic load flow tool Extended Herman Beta (HBE) transform – caters for (1) and (2)
- Stochastic simulator Monte-Carlo Simulation (MCS) – caters for (3)

Scope of HBE-transform

Loads

- Current models @ any power factor.
- P,Q @ deterministic pf; (perfect correlation $\rho_{P,Q}=1$); other correlations under testing.
- Balanced ($\rho_{A,B}$ =1, $\rho_{A,C}$ =1, $\rho_{B,C}$ =1); others being tested.
- Unbalanced.
- Correlations DG-DG; L-L; L-DG

AND: DG @ any pf.
Shunt capacitors.
FOR: LV, MV, HV
1- and 3-phase 2-,
3- or 4-w feeders.

Input – Transform – Output

System Inputs

- Feeder Electrical Properties
- Feeder, load and DG models

HBE Transform

 Statistical transform based on the method of moments

System Outputs

Statistical description (within risk) of:

- Voltage drop / bus voltages
- Line currents

This feeder model

Feeder type

3-phase 4-wire, no compensation technology

Topology

Parameters of sections between nodes

Allocation of loads at node/phase

Kiosk	Name		Branch Properties						Customer Allocation (to Kiosk)			
From node	To node (Kiosk)	Conduct or Type	Length [m]	R [Ω]	Χ [Ω]	Y/2 [V]	Current Rating [A]	A	В	С		
4	0	Al120	149.53	0.0421	0.0128		219	2	2	1		
2	1	A135	83.8	0.0791	0.0075		108	1	2	2		
2	2	A170	64 73	0.0308	0.0056		158	2	1	1		

Derivation of Statistical Load Models

Derivation of Statistical Load Models

		Rating [kVA]	Deaggregated Group Load Characteristics			Statistical Load Characteristics per household						
Trfmr Name II	т		Allocated	Allocated	Total Cust.	Summer	Winter ADMD [kVA]	CB limit [A]	Summer		Winter	
	ш		Demand [kVA]	Demand [kVA]		ADD [kVA]			α	β	α	β
Sunset Rocks		500	55.64	145.84	36	1.546	4.051	80	1.083	11.812	1.445	5.118
Fisherman's Bend		500	97.67	256.00	55	1.776	4.654	80	1.173	10.980	1.420	4.194
Leeukoppie		500	80.51	211.03	45	1.789	4.690	80	1.178	10.932	1.418	4.146
Oakburn		315	41.21	108.01	30	1.374	3.600	80	1.003	12.431	1.446	5.945
St. Mark's		500	72.03	188.80	46	1.566	4.104	80	1.092	11.738	1.444	5.029
Llandudno		800	80.51	211.03	53	1.519	3.982	80	1.072	11.908	1.446	5.237
Hargrave		315	101.22	265.30	44	2.300	6.030	80	1.317	9.217	1.296	2.658

PVDG model

calculation based on extreme case: PV-DG_{max} and coincident Load_{min}

Interpretation of Outputs

 2.5 % risk on both tails (lower tail – passive feeders; upper tail – active feeder)

Variable	Lower Limit	Upper Limit			
Voltage	0.92	1.1			
Current		1.0			
Trfmr Loading	-1.00 (rpf)	1.00			

Stochastic Simulator - MCS

- Based on random number generation and sampling
- Random placement to node
- Random phase allocation
- Placement constrained by:
 - circuit breaker size
 - available roof-space
- 800 scenarios (runs)

Stochastic-PLF Methodology

Definition of penetration (%)

- % penetration = $\frac{\sum_{i=0}^{N} PV_{rated_i}}{FMD} \times 100 \%$
- FMD Feeder Maximum Demand:

The maximum load that the feeder can supply without violations of either voltage or thermal conditions.

Results (800 or 2000 scenarios)

Results – voltage, current, total load

Sunset Rocks feeder

Active feeder results

Interpretation of results

Violation of limits:

- Passive feeder
 - voltage drop (usually at end), and
 - thermal rating on any section
- Active feeder
 - voltage rise at any node, and
 - thermal rating on any section
 - transformer loading
 - losses

Voltages, currents on passive feeder

Voltage rise at any node

Current in active feeder

Practical limits of installed capacity

Maximum voltages on the test reeder with increasing PVDG penetration

Practical limits of installed capacity

Maximum currents on the test feeder with increasing PVDG penetration

Findings

- 1) Roof space exceeds capacity of feeders to accommodate all rooftop PV DG. Limiting household injections (to about 7 kW/hh for SR feeder) increases overall hosting capacity.
- 2) Voltage rise limits on active feeders must consider correlated voltage rise on MV feeder:
 - 45~60% PV penetration if 7% LV voltage rise allowed
 - 10~20% PV penetration if only 4% LV rise allowed.

- 3) Some passive feeders already overloaded; not all DG alleviates overloading, depends on its location.
 - Thermal limits on PV DG depend on margin on passive feeder.
 - Every proposed installation would have to be studied before approval is granted

Caution

- 1) Results are based on a particular set of feeders and load models.
- 2) Penetration limits increase if maximum installed capacity of DG/hh is limited, and/or DG is restricted to 3-phase type.
- 3) Assumptions of correlated MV system variation are significant for capacity restricted by voltage rise.
- 4) Randomly located DG does not alleviate overloading.
- 5) Feeders with several long spurs require more detailed studies restricting the range of DG locations.

Voltage profiles

Passive system

Active system

Conformance to Practical models

Storage not considered

- Impacts the coincidence of high PV and low load
- Has potential to reduce the impacts of high PVDG
- Inverter Active Voltage Control at PCC points not included
 - Enforces export limits (or disconnection) to ensure local bus bar voltage conditions are not violated
 - Has potential to reduce the extent of technical impacts

Recommendations

- Further studies investigating the impacts of storage on uptake limits
- Extension of the network models to include the mechanisms of modern inverter systems; e.g. voltage control through disconnection or reduction in export power